

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

55 ANOS DE ATIVIDADES LIGADAS AO ESPAÇO

POLÍTICA INDUSTIAL E O PROGRAMA SINO-BRASILEIRO DE RECURSOS TERRESTRES CBERS I WORKSHOP EM INOVAÇÃO

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS – INPE 25 a 26 de agosto de 2016 São José dos Campos

Leonel F. Perondi

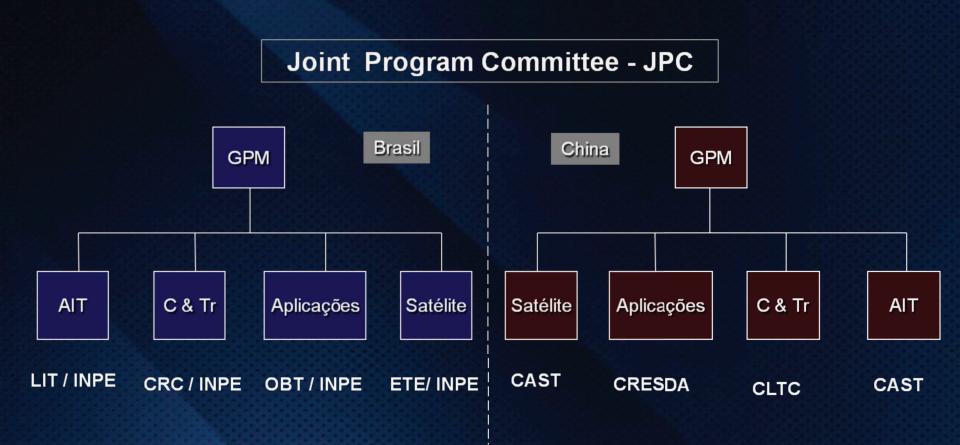
Sumário

- I. Breve Histórico do Programa CBERS
- II. Breve Panorama da Indústria Espacial Mundial
- III. Oportunidade para o estabelecimento de uma Indústria Espacial Brasileira
- IV. Arranjo Industrial em formação na Área Espacial
- V. Conclusão

Breve Histórico do Programa CBERS

ANO	DOCUMENTO
1988	Definição do projeto conjunto dos Satélites CBERS 1&2
1988	Pesquisa e Produção de Satélite de Recursos da Terra
1988	Acordo de Cooperação para o Satélite Recursos Terrestres China-Brasil entre a Academia Chinesa de Tecnologia Espacial e o Instituto de Pesquisas Espaciais do Brasil, CBERS 1&2
1994	Acordo-Quadro: Cooperação em Aplicações Pacíficas de Ciência e Tecnologia do Espaço Exterior entre o Governo da República Federativa do Brasil e o Governo da República Popular da China
2002	Protocolo Complementar: Continuidade do Desenvolvimento Conjunto de Satélites de Recursos Terrestres CBERS 3&4 , Brasília, 27 de novembro de 2002
2004	Protocolo Complementar: Desenvolvimento Conjunto do Satélite CBERS-2B
2004	Protocolo Complementar: Cooperação em Aplicações Pacíficas de Ciência e Tecnologia do Espaço Exterior para Cooperação no Sistema de Aplicações CBERS
2015	Protocolo Complementar: para o desenvolvimento do satélite sino-brasileiro CBERS-4A

Níveis de Relacionamento



Governo Brasil	Governo CHINA
MINISTÉRIO DA CIÊNCIA , TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕES – MCTIC	COMISSION FOR SCIENCE, TECNOLOGY AND INDUSTRY FOR DEFENSE – COSTIND
AGÊNCIA ESPACIAL BRASILEIRA - AEB	CHINA NATIONAL SPACE ADMINISTRATION - CNSA
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE	CHINA ACADEMY OF SPACE TECHNOLOGY - CAST

Estrutura de Gestão do Programa CBERS

Objeto do Acordo:

- Construção de dois satélites;
- Lançamento dos dois satélites;
- Operação em órbita;
- Uso conjunto das imagens;
- Divisão: 30 % Brasil 70 % China;

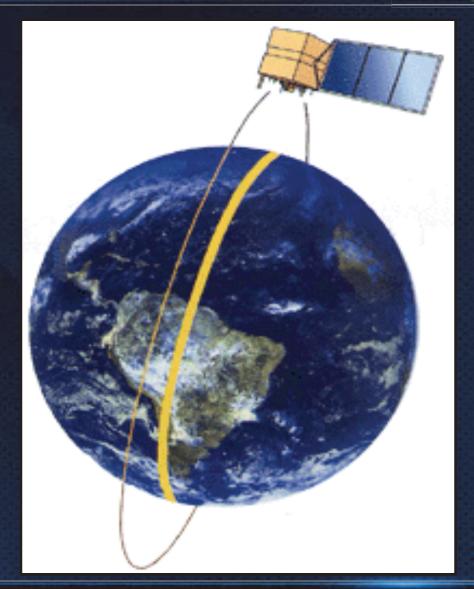
- Lançamentos: China.

Aplicação dos satélites:

- Sensoriamento remoto
- Coleta de dados
- Ciência Espacial

Órbita – CBERS 1&2

Órbita Polar:

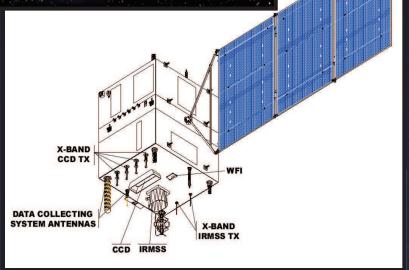

altitude: 778 km

tipo: hélio-síncrona

• inclinação: 98,5°

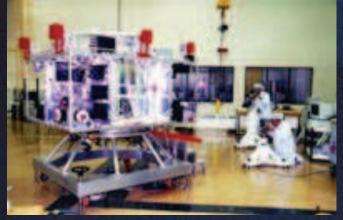
• período: 100,26 (x 60s)

ciclo orbital: 26 dias



Satélite - CBERS 1&2

Dois módulos: serviço e carga



The second secon	NAME OF TAXABLE PARTY.			
Massa total	1.540 kg	80 kg hidrazina		
Estrutura mecânica	1,8 x 2,0 x 2,2 m	alumínio e fibra de carbono		
Potência elétrica	1.400 W	14 m² painel solar; c.s. silício 2 baterias NiCd de 30 Ah		
Sistema de propulsão	hidrazina	16 propulsores de 1 N 2 propulsores de 20 N		
Precisão de apontamento	0,2 graus	rodas de reação, 'magnetic- torquers', giros e sensores		
Supervisão de bordo	distribuída	10 micro-processadores		
Telemetria e comandos	UHF e banda S	Padrão ESA para banda S		
Confiabilidade	0,6	Após 2 anos de vida		

Divisão de Responsabilidades – CBERS 182

Módulo de Serviço

Estrutura: Brasil

Controle térmico: China

Controle de órbita e atitude: China

Suprimento de energia: Brasil

Supervisão de bordo: China

Telecomunicações de serviço: Brasil/China

Divisão de Responsabilidades – CBERS 182

Módulo Carga Útil

Câmera CCD: China

IRMSS: China

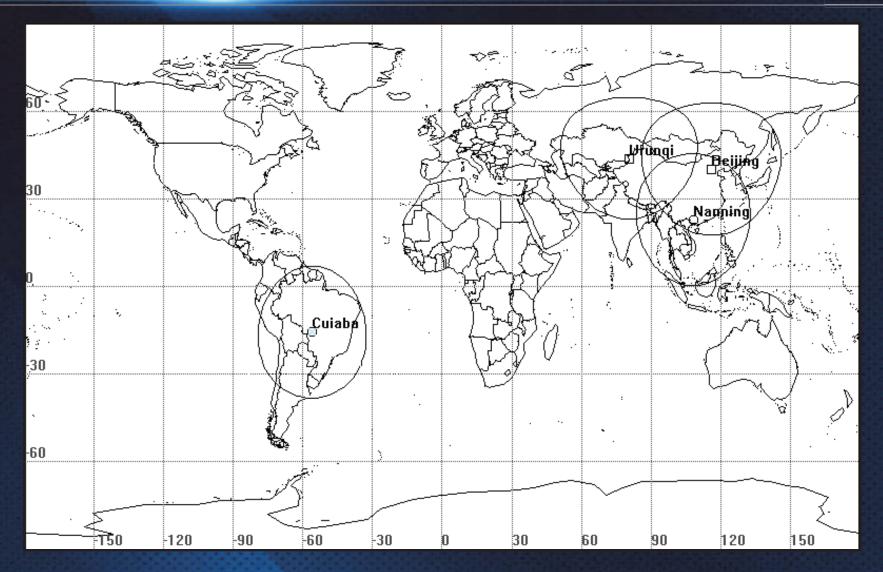
WFI: Brasil

Transmissor de dados imagem: China

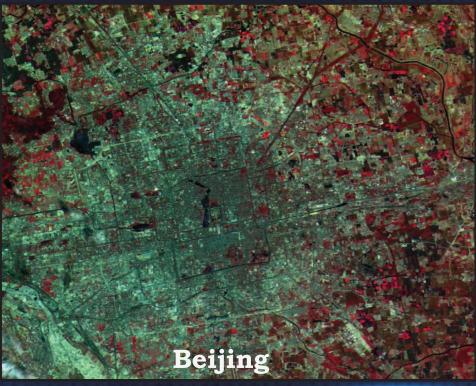
Coleta de dados: Brasil

Monitor ambiente espacial: China

Operação e Controle – CBERS 1&2


- A operação das cargas úteis do satélite é efetuada, independentemente, por cada país dentro da área de visibilidade de suas estações de recepção de imagens.
- O controle do satélite durante a vida útil é efetuada pelo Brasil e China em períodos iguais e alternados.

Estações de recepção CBERS 1&2



Política de uso das imagens – CBERS 1&2

■ Uso irrestrito das imagens para aplicações no Brasil e na China.

Configuração dos Sensores - CBERS 1&2

Sensor	Bandas (μm)	Faixa Imageada (km)	Resolução (m)	
CCD	0.45 - 0.52	120	20	
	0.52 - 0.59	120	20	
	0.63 - 0.69	120	20	
	0.77 – 0.89	120	20	
	0.51 – 0.73	120	20	
IRMSS	0.51 – 1.10	120	80	
	1.55 – 1.75	120	80	
	2.08 – 2.35	120	80	
	10.4 – 12.5	120	160	
WFI	0.63 - 0.69	890	260	
	0.77 – 0.89	890	260	

Integração e Testes – CBERS 1&2

CBERS-1

O satélite CBERS-1 foi integrado nas instalações da CAST, em Beijing, China.



Integração e Testes – CBERS 1&2

CBERS-2

O satélite CBERS-2 foi integrado nas instalações do LIT/INPE, em São José dos Campos, SP, Brasil. Teste de vibração acústica realizado na China.

CBERS-1 & 2: Resultados da Missão

CBERS-1

- Satélite operou satisfatoriamente durante sua vida.
- Tempo de operação ultrapassou vida útil de projeto:
 - Vida útil de projeto: 2 anos;
 - Tempo de operação: 3 anos e 10 meses.
- Problemas de projeto (AOCS) foram corrigidos ao longo da operação.
- Geração de imagens: problemas na qualidade das imagens.
- Satélite cumpriu satisfatoriamente a missão para a qual foi projetado.

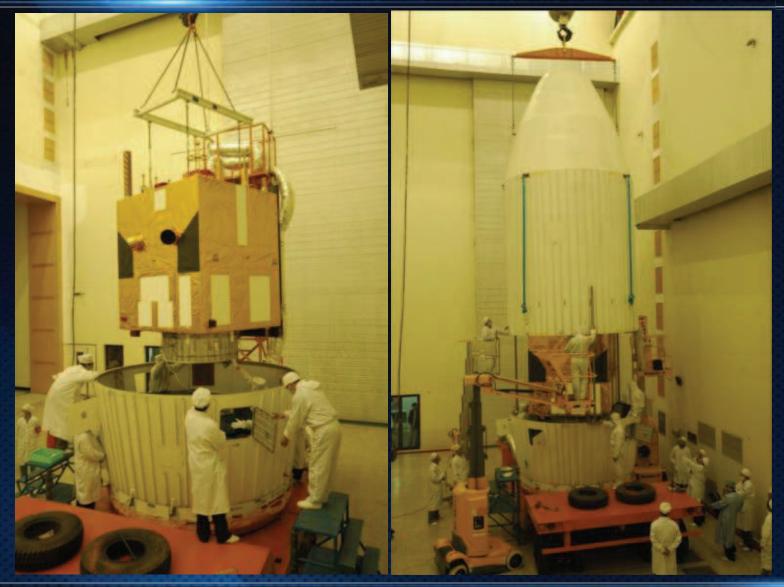
CBERS

CBERS-1 & 2: Resultados da Missão

CBERS-2

- Satélite operou satisfatoriamente durante sua vida.
- Tempo de operação ultrapassou vida útil de projeto:
 - Vida útil de projeto: 2 anos;
 - Tempo de operação: 6 anos e 2 meses.
- Geração de imagens:
 - Qualidade das imagens conforme requisitos.
- Satélite cumpriu com pleno êxito a missão para a qual foi projetado.

Detalhes do lançamento


CBERS-2

Integração ao Iançador. LM-4B

CBERS

CBERS-2 Integração ao lançador Longa Marcha 4B

Longa Marcha-4B

- Altura: 44 m.
- 3 estágios, combustível líquido.
- Capacidade: 2800 kg em órbita sun-synchronous (900km).
- Massa total: 250 t
 (232 tons de combustível).

Detalhes do lançamento

CBERS-2B

Objeto do Acordo:

- Construção de um satélite, fazendo uso, sempre que possível, de partes sobressalentes do Programa CBERS 1&2;
- Substituição da câmera IRMSS por uma câmera pancromática de alta resolução;
- Lançamento;
- Operação em órbita;
- Uso conjunto das imagens;
- Divisão: 30 % Brasil 70 % China;
- Integração: Brasil;
- Lançamentos: China.

Aplicação dos satélites:

- Sensoriamento remoto;
- Coleta de dados;
- Ciência Espacial.

Motivação para o CBERS-2B

- Proposta: julho / 2004.
- Resultado do estudo de viabilidade: outubro / 2004.

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
CBERS 1	Outubro	/ 99		Ag	osto / 03							
CBERS 2					Outubr	o / 03						
CBERS 3										Outubro	/ 08	
CBERS 2B					1000			Outubro	o / 06			
											War day	

Divisão de Trabalho CBERS-2B

Módulo de Serviço

Estrutura

Controle Térmico

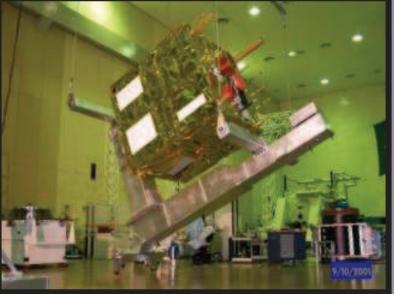
Controle de Atitude e Órbita

Suprimento de Energia

Computador de bordo

Telemetria

Brasil


Brasil

Brasil

Módulo de Carga Útil

CCD China IRMSS China WFI Brasil Transmissão de Dados China Transponder Coleta de Dados Brasil

CBERS

CBERS-2B Configuração dos Sensores

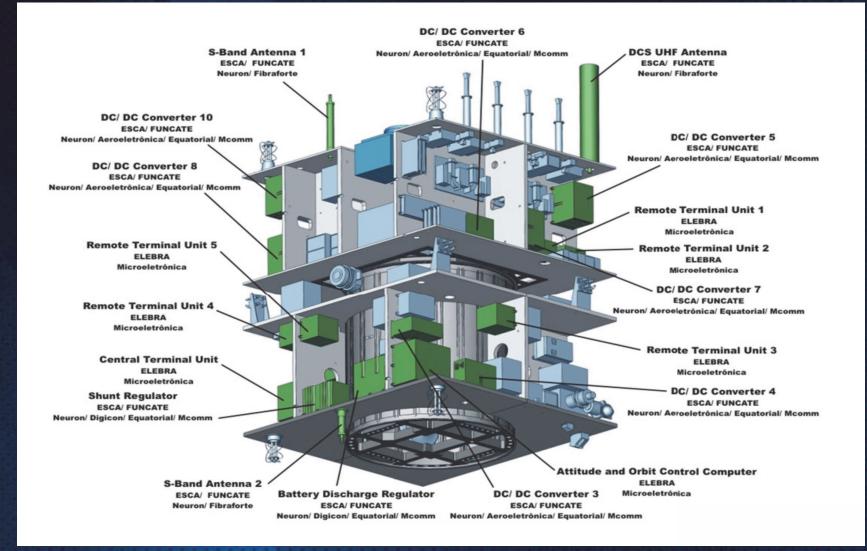
Sensor	Bandas (μm)	Faixa imageada (km)	Resolução (m)
PAN	0.51-0.73	27	2.5
CCD	0.45-0.52	120	20
	0.52-0.59	120	20
	0.63-0.69	120	20
	0.77-0.89	120	20
	0.51-0.73	120	20
WFI	0.63-0.69	890	260
	0.77–0.89	890	260

Integração do CBERS-2B no INPE (2006-2007)

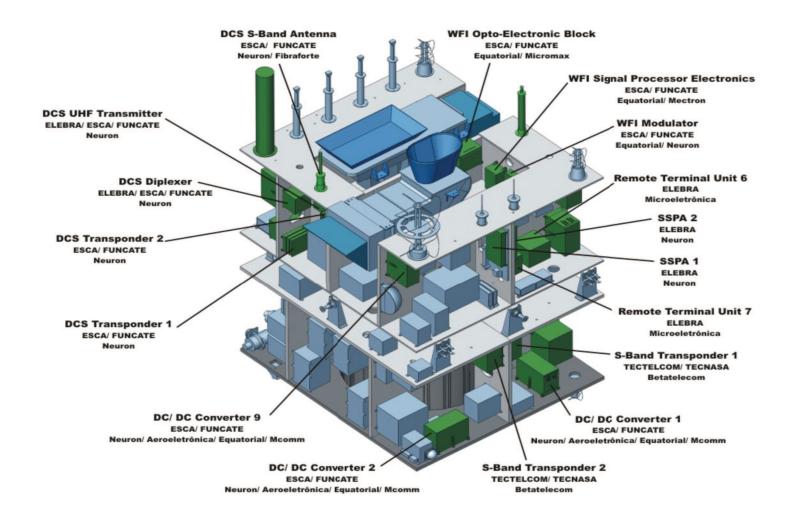
CBERS

CBERS-2B: Resultados da Missão

CBERS-2B

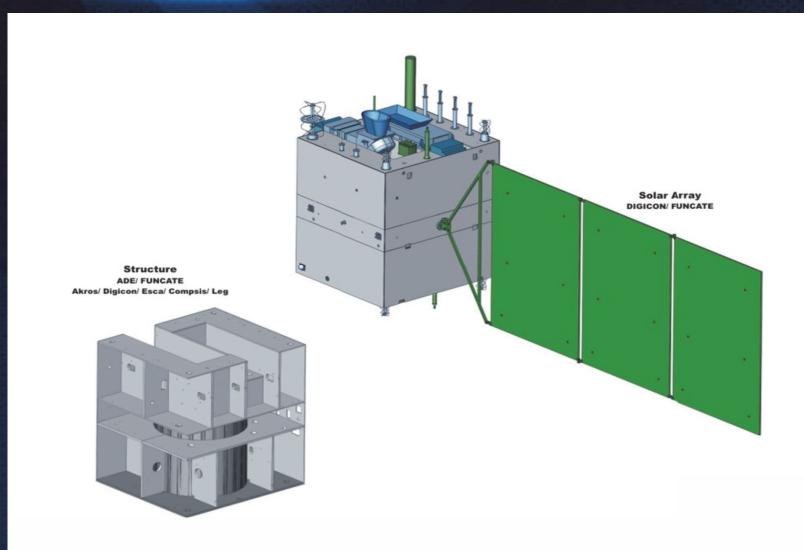

- Satélite operou satisfatoriamente durante sua vida.
- Primeiro satélite nacional a operar sensor de alta resolução.
- Tempo de operação ultrapassou vida útil de projeto:
 - Vida útil de projeto: 2 anos;
 - Tempo de operação: 2 anos e 7 meses.
- Geração de imagens:
 - Qualidade das imagens conforme requisitos.
- Satélite cumpriu com êxito a missão para a qual foi projetado.

Política Industrial CBERS 1&2 e 2B



Política Industrial (cont.)

Participação industrial nacional



Política Industrial (cont.)

CBERS 1&2 e 2B Participação industrial nacional

CBERS

Custo do Programa CBERS 1&2 e 2B

Investimento CBERS 1&2 no período 1988 – 2003:

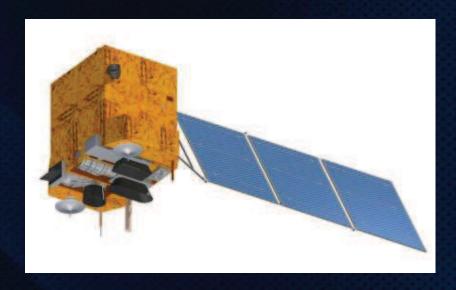
Contratos Nacionais : US \$ 40 milhões

US \$ 49 milhões Contratos Internacionais:

Custeio INPE: US \$ 22 milhões

■ Total : US \$ 111 milhões


Investimento CBERS 2B no período 2004 – 2007:


■ Total : US \$ 15 milhões

CBERS - 3&4

Nova geração de satélites CBERS: instrumentos mais avançados e tempo de vida de projeto superior.

CBERS 3&4

- Acordo assinado em novembro de 2002.
- Continuidade do Programa CBERS 1&2 e 2B.
- Os satélites CBERS 3&4 substituem a operação dos satélites da série CBERS 1&2 e 2B.
 - Satélites CBERS 1&2: 70 % e 30 %.
 - Satélites CBERS 3&4: 50% e 50%.
- Os satélites da série CBERS 3 e 4 estarão equipados com instrumentos mais sofisticados do que os que equipam os satélites da série CBERS 1&2.

Satélites CBERS-3&4

Objetivos do acordo

Continuidade da missão CBERS 1, 2 & 2B, através da construção de dois satélites;

Ampliação da capacidade de observação da Terra: quatro câmeras, com características mais avançadas que as três câmeras das missões anteriores.

Lançamento dos dois satélites;

Operação em órbita dos dois satélites;

Uso conjunto das imagens;

Divisão de custos: 50 % Brasil 50 % China;

Integração e lançamento: CBERS 3 China.e CBERS 4 Brasil.

CBERS 3&4 – Instrumentos

PANMUX

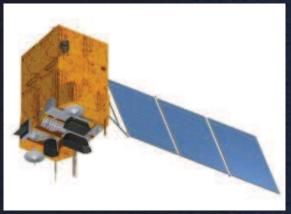
IRMSS

CCD

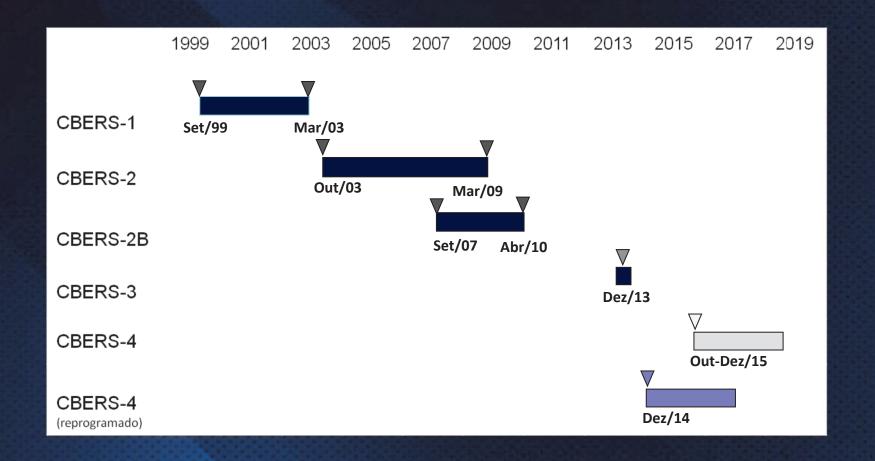
WFI

Danda	Intervals Connetral	Danaluaña	Lawrence de Ceive	Devieite
Banda	Intervalo Espectral (mm)	Resolução Espacial	Largura da Faixa Imageada	Revisita Real
1555555	(11111)	(m)	(km)	(dias)
Multi-espectral	0.51 – 0.85	5	60	-
Verde	0.52 – 0.59	10	60	5
Vermelho	0.63 – 0.69	10	60	5
IV próximo	0.77 – 0.89	10	60	5
Verde	0.52 – 0.59	20 (20)	120 (113)	26
Vermelho	0.63 – 0.69	20 (20)	120 (113)	26
IV-próximo	0.77 – 0.89	20 (20)	120 (113)	26
IV-médio	1.55 - 1.75	20	120	26
Multi-espectral (IV)	0.76 – 0.90	40 (80)	120 (120)	26
IV-médio	1.55 – 1.75	40 (80)	120 (120)	26
IV-médio	2.08 – 2.35	40 (80)	120 (120)	26
IV-thermal	10.4 – 12.5	80 (160)	120 (120)	26
Azul	0.45 – 0.52	73	866	5
Verde	0.52 – 0.59	73	866	5
Vermelho	0.63 – 0.69	73 (260)	866 (890)	5
IV-próximo	0.77 – 0.89	73 (260)	866 (890)	5

CBERS - 3&4 Divisão de Trabalho

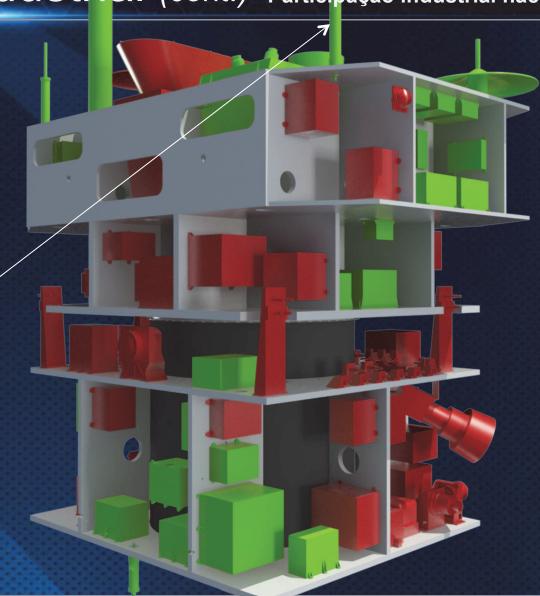

China	Brazil
TCS - Thermal Control	Structure
AOCS - Attitude Control *	EPSS - Electrical Power Supply **
OBDH - Onboard Data Handling *	TTCS – Service Telecommunications **
SCS - System Circuitry	MUX camera (20m)
PAN camera (5m)	WFI-2 camera (73m)
IRS camera (40m)	DDR – Data Recorder
SEM – Space Environment	DCS – Data Collecting
PIT – Data Transmitter	MWT – Data Transmitter

Plataforma CBERS



	CBERS 1, 2, 2B	CBERS 3, 4
Massa	1450 kg	1980 kg
Potência elétrica	1100 W	2300 W
Taxa de dados	166 Mbps	303 Mbps
Vida de projeto	2 years	3 years

Programa CBERS – Cronograma


Política Industrial (cont.) Participação industrial nacional

CBERS 3&4

Verde – Equipamentos contratados no Brasil

Suprimento de energia e TTC

TTC S-Band

Política Industrial (cont.) CBERS 3&4
Participação industrial nacional

Verde – Equipamentos contratados no Brasil

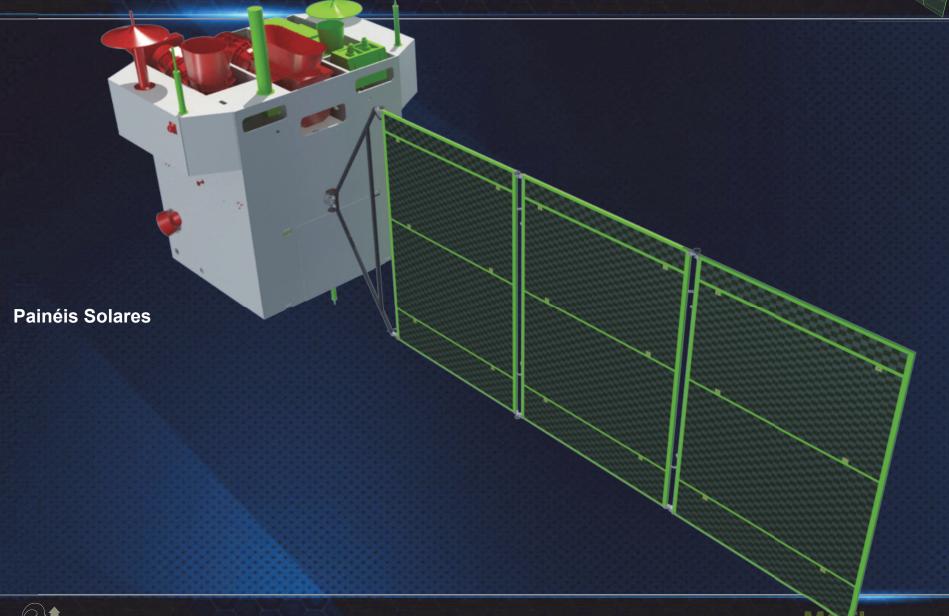
Cãmera MUX

Cãmera WFI

Coleta de Dados UHF

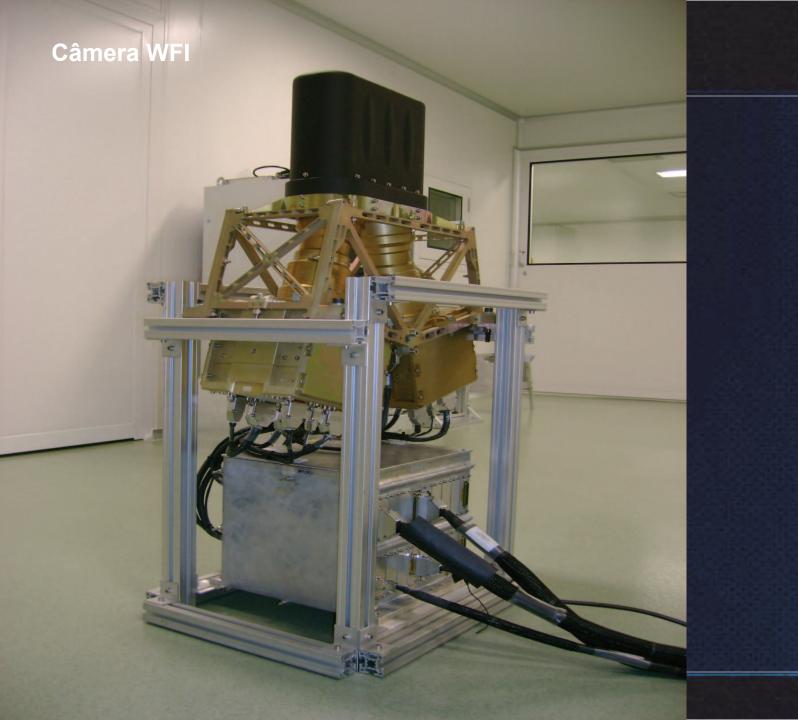
Política Industrial (cont.)

CBERS 3&4 Participação industrial nacional

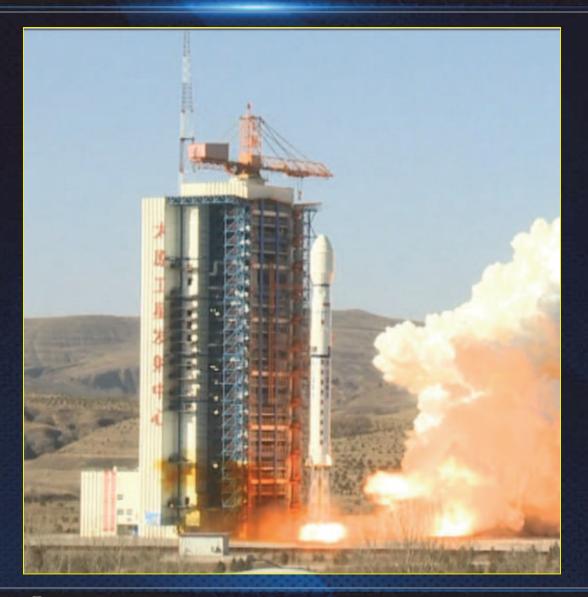

Estrutura

Política Industrial (cont.)

CBERS 3&4
Participação industrial nacional


Câmera MUX

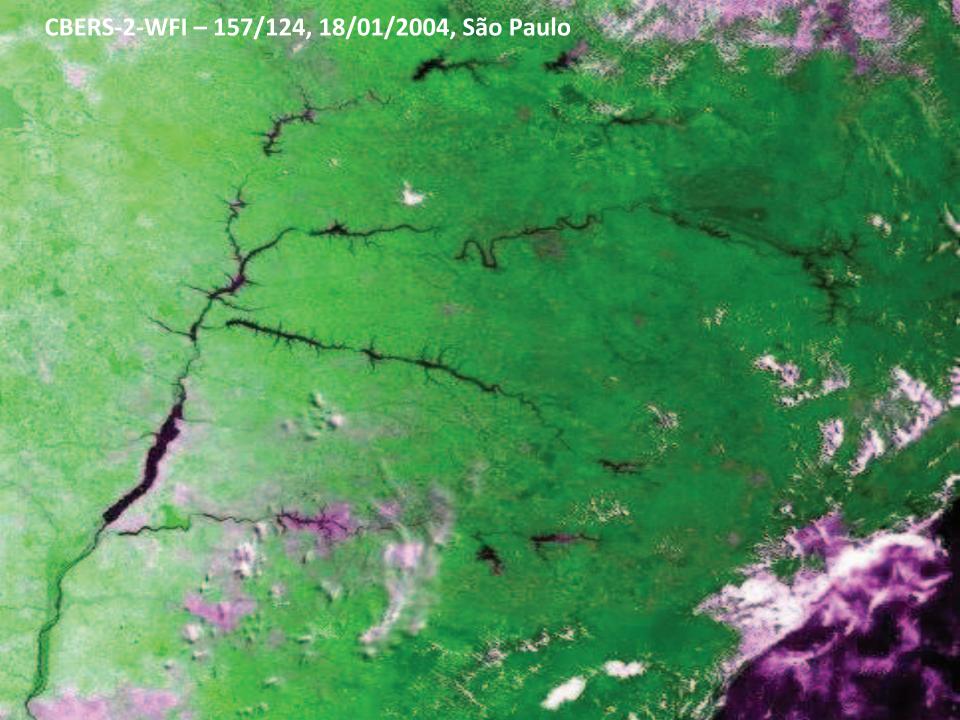
Lançamento CBERS-3


09.12.2013

Lançamento do Satélite CBERS-3, da base chinesa de Taiyuan.

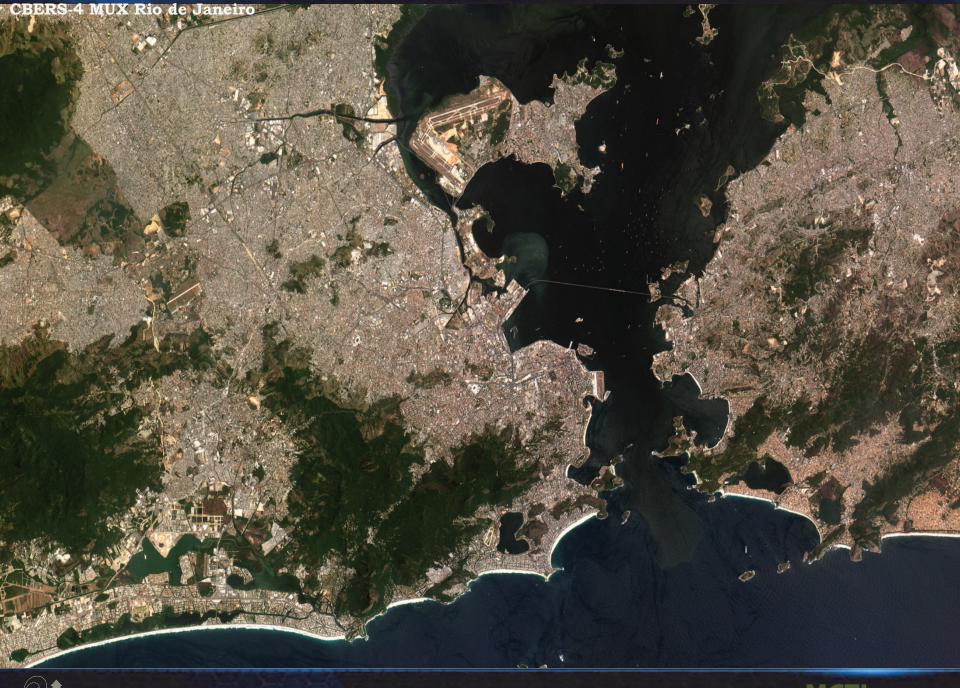
O CBERS-3 não operou em órbita, devido a falha do lançador LM-4B.

Lançamento CBERS-4



09.12.2014

Lançamento do Satélite CBERS-4, da base chinesa de Taiyuan.


O CBERS-4 opera com sucesso em órbita, desde dezembro de 2014.

Satélites lançados ao espaço no âmbito do Programa Nacional de Atividades Espaciais

CBERS

MISSION	Main Characteristics	Launcher	Launching Date	Launching Status	End of Operation
SCD-1	115 kg, 120 W, Data Collection	Pegasus, Orbital Science	Feb 09, 1993	Success	Operational
SCD-2A	115 kg, 120 W, Data Collection	VLS-1, V1	Dec 02, 1997	Launcher failure	
SCD-2	115 kg, 120 W, Data Collection	Pegasus, Orbital Science	Oct 22, 1998	Success	Operational
CBERS-1	1.450 kg, 1.100 W, Earth Observation, Data Collection	Long March, GWIC	Oct 14, 1999	Success	Out 12, 2003
SACI-1	60 kg, 120 W, Scientific Data	Long March, GWIC	Ouc 14, 1999	Satellite failure	
SACI-2	60 kg, 120 W, Scientific Data	VLS-1 V2	Dec 11, 1999	Launcher failure	
CBERS-2	1.450 kg, 1.100 W, Earth Observation, Data Collection	Long March, GWIC	Oct 21, 2003	Success	Jan 10, 2009
CBERS-2B	1.450 kg, 1.100 W, Earth Observation, Data Collection	Long March, GWIC	Sep19, 2007	Success	Apr 16, 2010
CBERS-3	1.980 kg, 2.300 W, Earth Observation, Data Collection	Long March, GWIC	Dec 09, 2013	Launcher failure	
CBERS-4	1.980 kg, 2.300 W, Earth Observation, Data Collection	Long March, GWIC	Dec 07, 2014	Success	Operational

Política Industrial (cont.) CBERS 3&4 Participação in

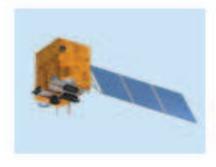
CBERS

Participação industrial nacional

OPTO-ELETRÔNICA	R\$ 85.100.052.10
OMNISYS	R\$ 3.040.614.08
OMNISYS	R\$ 10.188.733.26
AEROELETRONICA	R\$ 24.704.596.56
CENIC	R\$ 49.442.106.58
MECTRON	R\$ 11.664.560.07
OPTO/EQUATORIAL	R\$ 60.589.870.55
OMNISYS	R\$ 39.976.407.51
MECTRON	R\$ 7.858.848.00
NEURON	R\$ 2.772.054.75
OMNISYS	R\$ 14.884.414.17
ORBITAL	R\$ 5.319.287.59
ORBISAT	R\$ 800.000.00
FUNCATE	R\$ 329.560.00
CENIC	R\$ 3.459.986.00

CONTEÚDO REPASSADO À INDÚSTRIA PROGRAMAS CBERS 3&4

ANO		Valor total descentralizado CBERS 3&4, considerando contingenciamentos	Investimentos em contratos industriais nacionais CBERS 3&4	% repassado à indústria	
	2003 a 2013	465.810.393,99	379.832.033,37	81,5%	



Futuro do Programa CBERS

Missão CBERS – 4A Continuidade da Missão CBERS-4.

Aprovação do Protocolo Complementar ao Acordo Quadro Brasil-China em aprovação pelo Congresso Nacional.

Câmara aprova parceria entre Brasil e China para desenvolver o satélite CBERS-4A

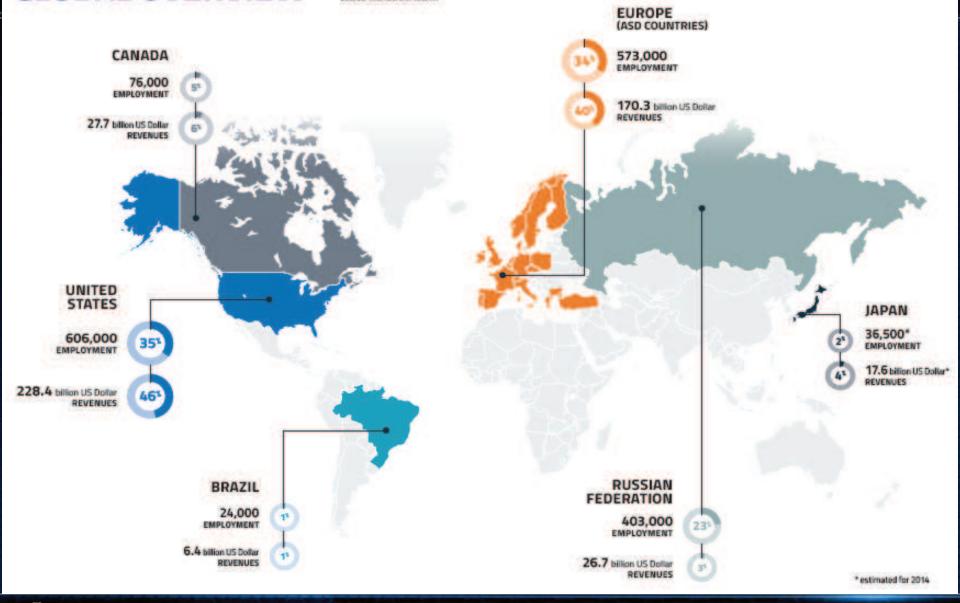
Quinta-feira, 25 de Agosto de 2016

O Projeto de Decreto Legislativo (PDC) 492/16, que contém o protocolo complementar para o desenvolvimento do satélite sino-brasileiro CBERS-4A, foi aprovado na segundafeira (22/8) pelo Plenário da Câmara dos Deputados, em Brasília. A matéria já está aprovada também pelo Senado Federal.

Principais resultados do Programa CBERS

- Ampliação da cooperação internacional Sul-Sul.
- Capacitação nacional no desenvolvimento do ciclo de vida de sistemas espaciais.
- Capacitação de um arranjo industrial para o projeto e fabricação de sistemas espaciais.

Questões importantes


- O Brasil apresenta as condições necessárias para vir a ser uma ator no moderno setor da Economia do Espaço?
- Quais as ações a serem implementadas no curto e médio prazos?
- Como comunicar à sociedade a aos setores decisórios a existência desta possibilidade?

Setor Aeroespacial Mundial Visão Estratégica para o Brasil

2014 AEROSPACE INDUSTRY GLOBAL OVERVIEW Source Members of ICCAIA

Indústria Aeroespacial Mundial - 2014

	Faturamento (BUS\$)	Número de Trabalhadores	% Faturamento (F)	% Trabalhadores (T)	F/T	Faturamento/ Trabalhador (US\$)
Canadá	27,7	76.000	5,8%	4,4%	1,3	364.473,70
EUA	228,4	606.000	47,9%	35,3%	1,4	376.897,70
Europa	170,3	573.000	35,7%	33,3%	1,1	297.207,70
Japão	17,6	36.500	3,7%	2,1%	1,7	482.191,80
Rússia	26,7	403.000	5,6%	23,5%	0,2	66.253,10
Brasil	6,4	24.000	1,3%	1,4%	1,0	266.666,70
	477,1	1.718.500				

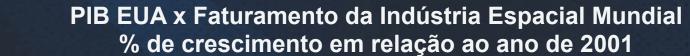
Breve Panorama da Indústria Espacial Mundial

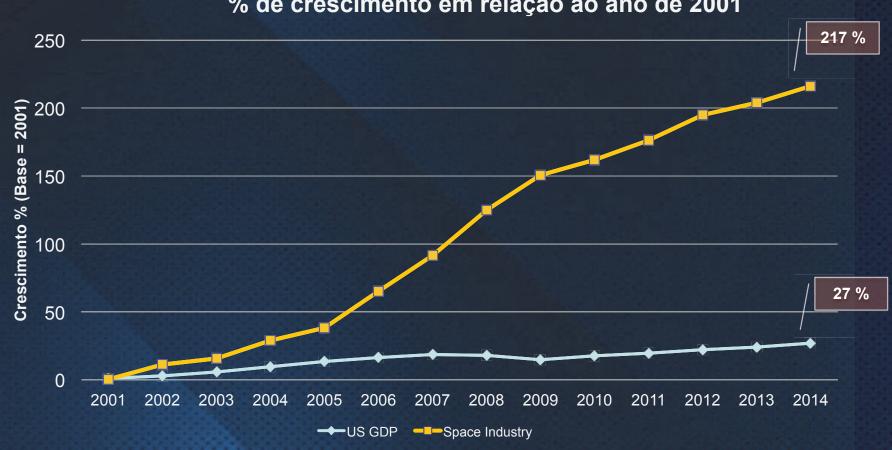
Indústria Espacial Mundial

Indústria Espacial Mundial

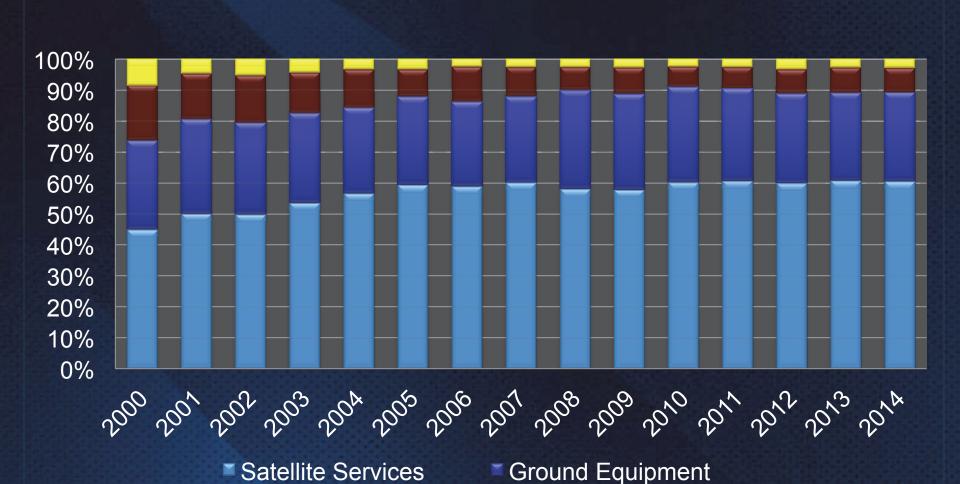
FONTE: SIA, 2015 - State of the Satellite Industry Report, Satellite Industry Association, USA, 2015.

Indústria Espacial Mundial



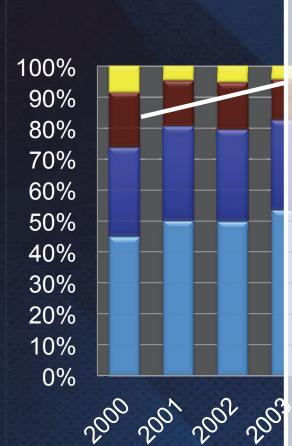


Indústria Espacial Mundial



FONTE: SIA, 2015 - State of the Satellite Industry Report, Satellite Industry Association, USA, 2015.

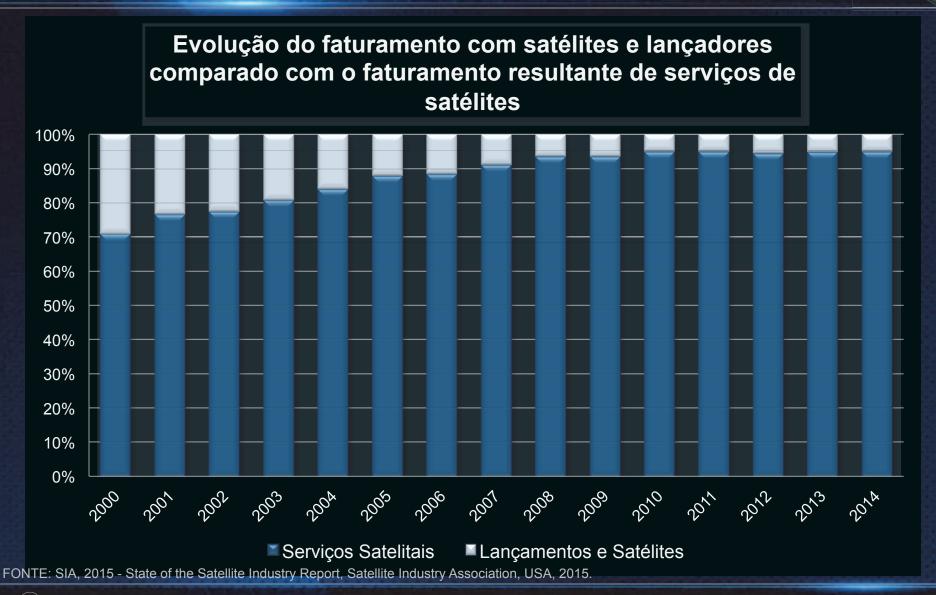
Crescimento da indústria espacial mundiat


Satellite Manufacturing Launch Industry

FONTE: SIA, 2015 - State of the Satellite Industry Report, Satellite Industry Association, USA, 2015.

Crescimento da indústria espacial mundia

Outra característica de uma indústria emergente: à medida que a indústria avança em seu estabelecimento, observa-se que o faturamento com o sistema que nucleia a indústria torna-se uma fração cada vez menor do faturamento total.



- Satellite Services
- Ground Equipment
- Satellite Manufacturing Launch Industry

Crescimento da indústria espacial mundiat

Panorama da Indústria Espacial Mundial

INDÙSTRIA NÃO-SATELITAL 119,7 B US\$

Non-satellite industry space revenues = human spaceflight, non-orbital spacecraft, government spending

EQUIPAMENTO DE SOLO

- Redes
- » Gateways
- » Estações de Controle
- » Very Small Aperture Terminals (VSATs)
- Equipmento de Usuários
- » Antenas Parabólicas para TV
- » Equipamentos para Rádio
- » Satellite broadband dishes
- » Telefiones e Ternminais Móveis
- » Satellite navigation stand-alone hardware

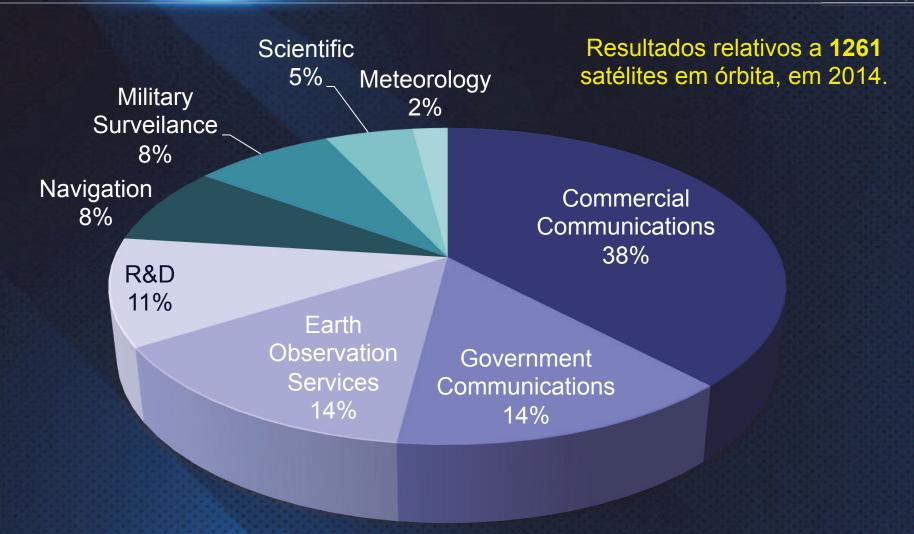
EQUIPAMENTO DE SOLO 58,3 B US\$ 18% 37% 2% **Total 322,7** 5% **Bilhões** US\$ (Ano 2014) 38%

SERVIÇOS DE **LANÇAMENTO**

5.9 B US\$

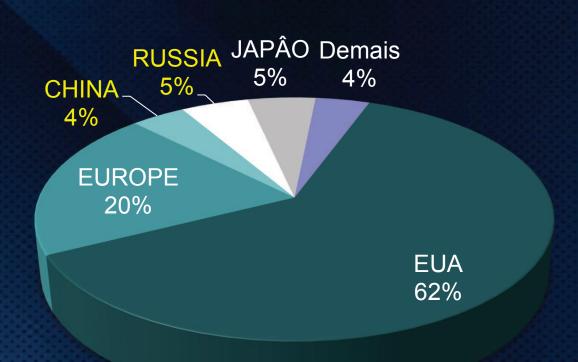
FABRICAÇÃO DE **SATÈLITES** 15.9 B US\$

SERVIÇOS SATELITAIS 122,9 B US\$


Telecomunicações Observação da Terra Científico Segurança Nacional Navegação Pesquisa % Desenvolvimento

CBERS

Satélites Operacionais por Função - 2014



Faturamento por país com a fabricação de satélites - 2014

Em 2014, foram lançados 208 satélites, sendo 130 destes classificados como Cubesats.

- Fabricantes americanos perceberam 62% do faturamento mundial com a fabricação de satélites, em 2014.
- Rússia e China, países do BRIC, perceberam, juntos, 9% do faturamento mundial com a fabricação de satélites, em 2014.
- 99 dos 130 satélites fabricados nos EUA, em 2014, são Cubesats.

Oportunidade para o estabelecimento de uma Indústria Espacial Brasileira

Ativos do País na Área Espacial

- Capacitação em engenharia e infraestrutura necessários ao desenvolvimento completo do Ciclo de Vida de Sistemas Espaciais.
- Arranjo Industrial em formação na Área Espacial.
- Infraestrutura de Rastreio e Controle e de Recepção e Distribuição de Dados.
- Veículos lançadores em desenvolvimento.
- Bases de lançamento.
- Qualificação de recursos humanos especializados.
- Geração e disponibilização do conhecimento necessário ao desenvolvimento de diversos serviços associados ao uso de sistemas espaciais.
- Ampla demanda, no país, por Aplicações de Sistemas Espaciais.

INPE - Áreas Estabelecidas

Acesso ao Espaço

- Engenharia
- Integração e Testes
 - P & D Tecnologias Espaciais

Infraestrutura Espacial

- Rastreio e Controle
- Recepção e Distribuição

Aplicações

- Ciência Espacial
- Meteorologia e Clima
- Observação da Terra
- Ciência do Sistema Terrestre

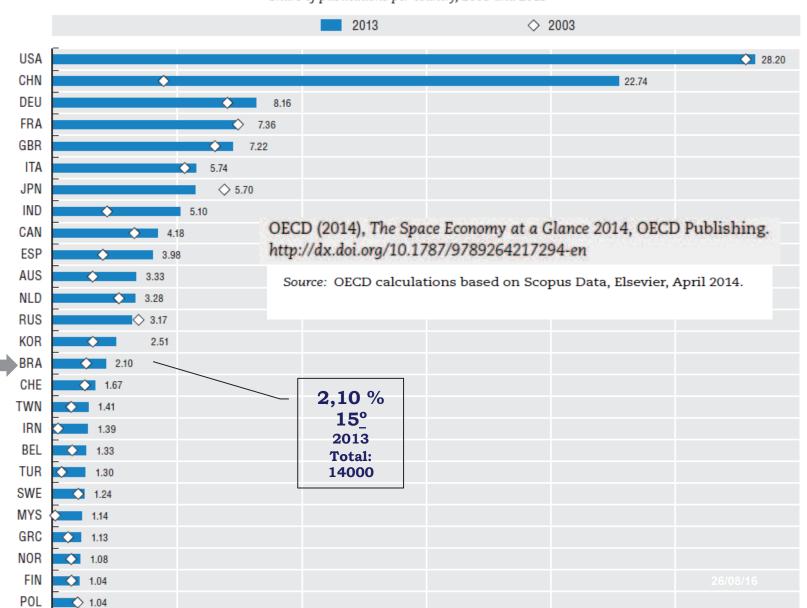
ciência

FOLHA DE SÃO PAULO 02/05/2014

Fiocruz, Embrapa e Inpe lideram pesquisa no país, diz novo ranking

SABINE RIGHETTI FERNANDO TADEU MORAES DE SÃO PAULO

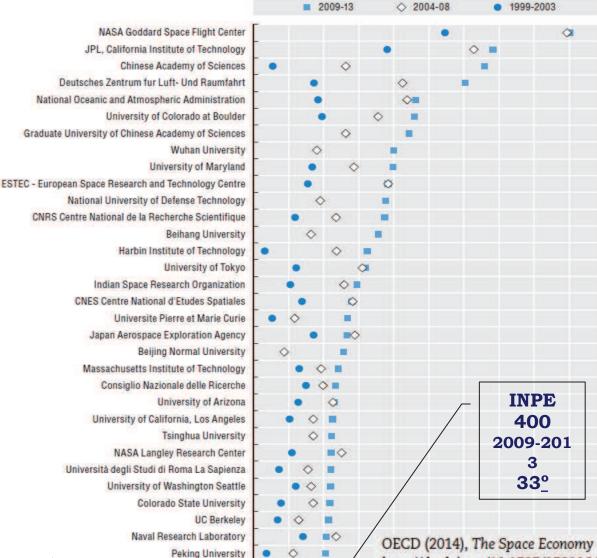
02/06/2014 01h50


A Fiocruz é o melhor instituto de pesquisa do Brasil em termos de qualidade de produção científica, e o A.C.Camargo Cancer Center é o melhor hospital.

As informações são da Universidade de Leiden (Holanda). Pela primeira vez, cientistas da instituição usaram uma metodologia similar a de seus rankings universitários para um levantamento de produção científica. As instituições brasileiras foram as primeiras contempladas.

16.3. Scientific production in satellite technologies per country

Share of publications per country, 2003 and 2013



16.4. Scientific production in satellite technologies by top forty institutions

Peer-reviewed scientific publications over three five-year period, 1999-2002, 2003-08 and 2009-13

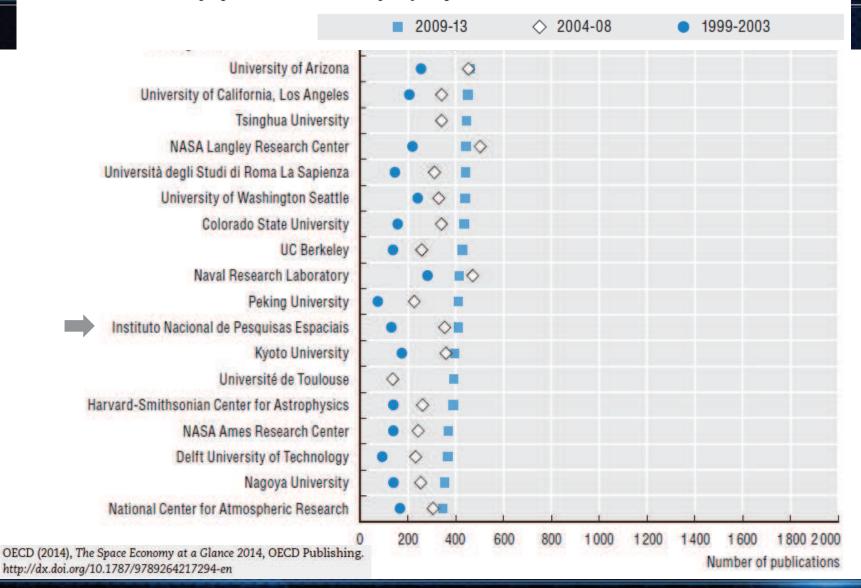
0

Instituto Nacional de Pesquisas Espaciais

Harvard-Smithsonian Center for Astrophysics

Kyoto University

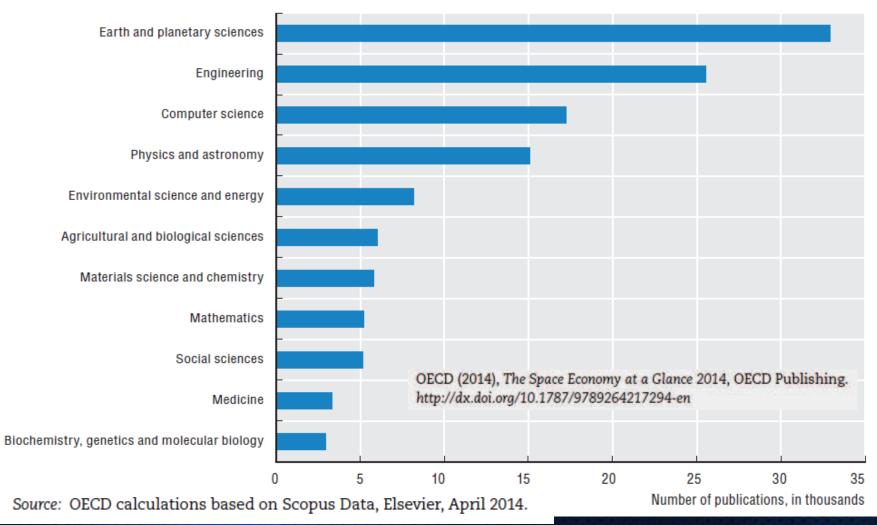
Université de Toulouse



OECD (2014), The Space Economy at a Glance 2014, OECD Publishing. http://dx.doi.org/10.1787/9789264217294-en

16.4. Scientific production in satellite technologies by top forty institutions

Peer-reviewed scientific publications over three five-year period, 1999-2002, 2003-08 and 2009-13



16.2. Scientific production in satellite technologies by subject area

Number of publications, 2008-13

Arranjo Industrial em formação na Área Espacial

Política Industrial - INPE

Principais metas de política industrial:

- Promover a qualificação de fornecedores industriais em tecnologias espaciais.
- Promover e cooperar para o desenvolvimento de um arranjo industrial para a produção de sistemas espaciais no Brasil.
- Estabelecimento de uma indústria espacial no Brasil.

Ciclo de Vida de Projetos - INPE

Concepção	Viabilidade	Projeto		Execução	Operação	Descarte
FASE 0	FASE A	FASE B	FASE C	FASE D	FASE E	FASE F
Análise de Missão	Análise de viabilidade	Definição Preliminar do Projeto	Definição Detalhada do Projeto	Produção e Qualificação	Operação	Descarte
		Modelo de	Engenharia Modelo de 0	Qualificação Modelo de Vôo		
M	OR PF	SRR PE	OR CD	R QR FRR	ORR	
PRR - Revisi PDR - Revisi CDR - Revisi	ão de Definiçã ão Preliminar o ão de Projeto P ão de Projeto D o de Aceitação	le Requisitos reliminar letalhado	QR-F	Revisão de Requis Revisão de Qualific Revisão de Prontic Revisão de Prontic	ação Ião para Vôo	

ä

Capacitação Industrial

Concepção	Viabilidade FASE A	Projeto		Execução	Operação	Descarte
FASE 0		FASE B	FASE C	FASE D	FASE E	FASE F
Análise de Missão	Análise de viabilidade	Definição Preliminar do Projeto	Definição Detalhada do Projeto	Produção e Qualificação	Operação	Descarte

Nos últimos 10 anos, foram contratados, via licitações de preço e técnica, três sistemas espaciais na Indústria Nacional – CBERS-2B (lançado em 2007), CBERS-3 (l. 2013) e o CBERS-4 (l. 2014).

- 1 A indústria espacial mundial apresenta um faturamento anual da ordem de 320 bilhões de dólares (2014), sendo que a fabricação, o lançamento, a infraestrutura de solo e os serviços diretos de sistemas espaciais apresentam um faturamento da ordem de 200 bilhões de dólares anuais (2014).
- 2 A indústria espacial mundial constitui-se em uma indústria emergente, em fase de crescimento.
- 3 O Brasil ainda desfruta da oportunidade de vir a ser um ator internacional no setor espacial, a exemplo de seu sucesso no setor aeronáutico, gerando oportunidades de renda e divisas.
- 4 Esta janela de oportunidade tende a se evanescer nos próximos 5 a 10 anos, dada a celeridade com que a indústria espacial mundial caminha para uma fase de maturidade ("late entrant fee").

- 5 Ao longo de sua trajetória, o Programa Espacial Brasileiro desenvolveu (a) capacitação em engenharia e a Infraestrutura para o desenvolvimento completo do Ciclo de Vida de Sistemas Espaciais no país. (b) Infraestrutura de Rastreio e Controle e de Recepção e Distribuição de Dados, (c) a qualificação parcial no projeto e desenvolvimento de Veículos Lançadores, (d) bases de lançamento, (e) qualificação de recursos humanos, (f) o conhecimento necessário ao desenvolvimento de diversos serviços associados ao uso de sistemas espaciais e, principalmente, um arranjo industrial mínimo para a fabricação de sistemas espaciais no Brasil.
- 6 Nos últimos 10 anos, foram contratados 3 satélites na indústria nacional, no âmbito do Programa CBERS. Todos os contratos foram finalizados e os três satélites lançados.
- 7 O arranjo industrial tende a se desfazer, devido à ausência de novas contratações.

- 8 De modo que o país possa ainda almejar ser um ator na futura indústria espacial mundial, gerando oportunidades de renda e divisas, há a necessidade de ações urgentes, sendo a principal a contratação imediata de sistemas espacias na indústria nacional, de modo a manter e ampliar a capacitação industrial nacional no setor.
- 9 Finalmente, é fundamental que seja dada atenção imediata à questão da recomposição de quadros das principais organizações de governo que atuam na área espacial. Não haveria tempo hábil para tratar, aqui, também, deste segundo problema crítico da área espacial brasileira, que coloca em risco a capacidade do país em desenvolver uma industrial espacial nacional.

O Brasil apresenta as condições necessárias para vir a ser uma ator no moderno setor da Economia do Espaço?

Sim.

 Quais as ações a serem implementadas no curto e médio prazos?

Estabelecimento de novos programas e investimento em recursos humanos.

setores decisórios a existência desta possibilidade?

VISÃO DE FUTURO

Paralelo: Indústria Aeronáutica x Indústria Espacial

1950 > 1953 > 1968 > 1969 > 1969

ITA

Formação de recursos humanos em aeronáutica e espaço

INPE

GO-CNAE

IPD

Pesquisa aplicada e desenvolvimento **BANDEIRANTE**

EMBRAER

Indústria aeronáutica

1961 1999 2003

CBERS-1

SCD-1

SCD-2

CBERS-2

CBERS-3

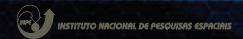
2013 2014

CBERS-4

Amazônia – 1

2017(?)

Pós-Graduação


Formação de recursos humanos em Ciências e Tecnologias Espaciais

ETE - CEA CPTEC - OBT CST

Pesquisa aplicada e desenvolvimento

Bandeirante – "... fizemos este nosso primeiro avião voar em 22/outubro/1968 Uma coisa muito importante a ser assinalada é a pouca capacidade que nós temos, como brasileiros, de acreditar. Este avião foi absolutamente desacreditado e se pensava que jamais pudesse voar. No dia do vôo, 22 de outubro de 1968, foi um dia de espanto em São José dos Campos, pois não se esperava que o avião pudesse decolar e pousar. ..."

Eng. Ozires Silva
Palestra: Cultura de inovação permanente em grandes empresas
Seminário de Defesa - Transformação da defesa nacional
28/07/2011 - Rio de janeiro
http://www.rsync.com.br/livrobranco/

Obrigado.