Lição VI - A CLASSIFICAÇÃO DA BACIA HIDROGRÁFICA DO RIO IBICUÍ

Nesta lição estudaremos como se pode criar um mapa da bacia do rio Ibicuí, que nos mostre, por exemplo: água, vegetação e área agrícola.Para isto, utilizaremos a imagem de satélite da região e também o Spring.

Enfocaremos os seguintes temas:

- Introdução à Classificação por Pixel de uma Imagem de Satélite;
- Classificação da Bacia do Rio Ibicuí;
- Área Agrícola: Cultivo do Arroz.

INTRODUÇÃO À CLASSIFICAÇÃO POR PIXEL DE UMA IMAGEM DE SATÉLITE

A classificação de uma imagem de satélite consiste em estabelecer o processo de decisão pelo qual um grupo de pixels (termo pixel vem da abreviação do termo em inglês "pictures elements", ou elementos da fotografia - digital -. A "junção" de todos os pixels é que formam a imagem inteira) é definido como pertencente a uma determinada classe ou tema (água, vegetação, solo, área agrícola, entre outros) que descreve um objeto no mundo real. Utilizaremos para esta atividade a classificação por pixel.

A Classificação é o processo de extração de informação em imagens para reconhecer padrões e objetos homogêneos. Os Classificadores "pixel a pixel" utilizam apenas a informação espectral isoladamente de cada pixel para achar regiões homogêneas.

O resultado final de um processo de classificação é uma imagem digital que constitui um mapa de "*pixels*" classificados, representados por símbolos gráficos ou cores.

As técnicas de classificação que há no Spring são:

MAXVER - considera a ponderação das distâncias entre médias dos níveis digitais das classes, utilizando parâmetros estatísticos. Para que a classificação por máxima verossimilhança seja precisa o suficiente, é necessário um número razoavelmente elevado de "*pixels*", para cada conjunto de treinamento. Os conjuntos de treinamento definem o diagrama de dispersão das classes e suas distribuições de probabilidade, considerando a distribuição de probabilidade normal para cada classe do treinamento.

MAXVER-ICM - Enquanto o classificador MAXVER associa classes considerando pontos individuais da imagem, o classificador MAXVER-ICM

(Interated Conditional Modes) considera também a dependência espacial na classificação.

Em uma primeira fase, a imagem é classificada pelo algoritmo MAXVER atribuindo classes aos "pixels", considerando os valores de níveis digitais. Na fase seguinte, leva-se em conta a informação contextual da imagem, ou seja, a classe atribuída depende tanto do valor observado nesse "pixel", quanto das classes atribuídas aos seus vizinhos.

O algorítmo atribui classes a um determinado "pixel", considerando a vizinhança interativamente. Este processo é finalizado quando a '%' de mudança (porcentagem de "pixels" reclassificados), definida pelo usuário é satisfeita.

O SPRING fornece ao usuário as opções de 5%, 1% e 0.5% para valores de porcentagem de mudanças. Um valor 5% significa que a reatribuição de classes aos "pixels" é interrompida quando apenas 5% ou menos do total de "pixels" da imagem foi alterado.

DISTÂNCIA EUCLIDIANA - O método de classificação por distância Euclidiana é um procedimento de classificação supervisionada, que utiliza esta distância para associar um "pixel" á uma determinada classe.

Os **planos de informação** a seguir foram originados pelos classificadores *MAXVER* e *DISTÂNCIA EUCLIDIANA*.

```
1 - (V) Mapa_Bacia_Ibicuí
- (M) Bacia_Ibicuí_class1-T_maxv
- (√) Matriz: ♠:
```

Clique em **Selecionar...** Para poder ver uma ou mais classes separadamente.

Desmarque () **Bacia_Ibicuí_class1-T_maxv** e selecione:

```
2 - (V) Mapa_Bacia_Ibicuí
- (M) Bacia_Ibicuí_class2-T_eucl
- (√) Matriz: ♠:
```

Clique em **Selecionar...** Para poder ver uma ou mais classes separadamente.

CLASSIFICAÇÃO DA BACIA DO RIO IBICUÍ

Antes de apresentarmos os procedimentos para executar uma classificação da bacia do rio Ibicuí descreve-se a seguir a seqüência lógica de operações a ser seguida:

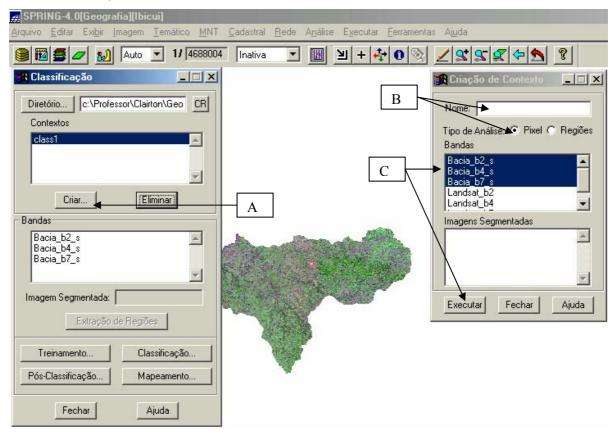
Criar o arquivo de Contexto - este arquivo armazena quais as bandas farão parte do processo de classificação, qual o método utilizado (*pixel* ou região) e as amostras no caso da classificação por *pixel*;

Executar o treinamento - deve ser feita amostragens sobre uma imagem na área de desenho:

Analisar as amostras - permite verificar a validade das amostras coletadas;

Executar a Classificação - de posse da amostras e das bandas escolhidas a imagem é classificada;

Executar uma Pós-classificação - processo de extração de *pixels* isolados em função de um limiar e um peso fornecidos pelo usuário (não obrigatório);


Executar o Mapeamento para Classes - permite transformar a imagem classificada (categoria Imagem) para um mapa temático *raster* (categoria Temática).

Classificação por Pixel:

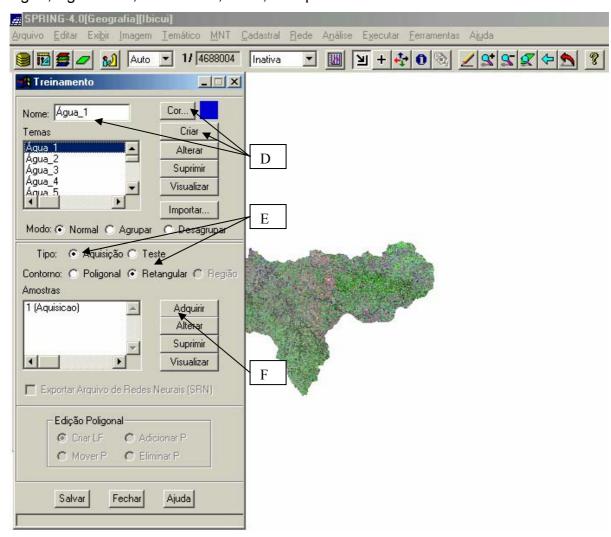
Visualizar uma composição colorida RGB com bandas da bacia do Ibicuí Landsat 2, 4 e 7 ou apenas uma banda.

- [Imagem][Classificação...]

Criando arquivo de contexto:

Classificação:

A - Clique em Criar

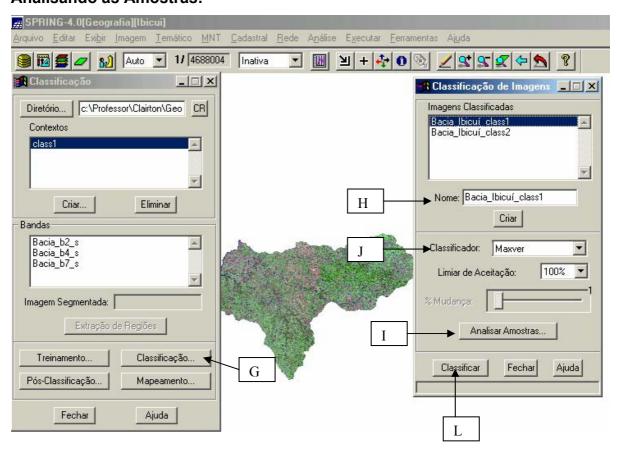

Criação de Contexto:

- B Defina o nome do arquivo contexto: (Contexto). Tipo de Análise Pixel
- C (Bandas b2, b4 e b7) selecionar bandas (clicando em cada uma). **Executar**.

Executando o Treinamento:

Neste exercício vamos mapear as seguintes classes temáticas:

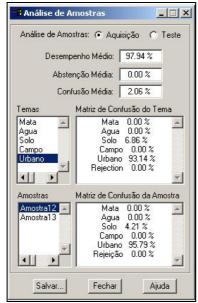
Água; Agricultura; Mata Ciliar; Mata; Campo e Areia.



Clique em **Treinamento...** na janela "Classificação".

- D Na janela Treinamento forneça o **Nome** do tema (por exemplo, Mata, Água etc). Clique em **Cor...** e **escolha** uma para o tema a ser criado. Clique em **Criar**. Observe que o tema é apresentado na lista de "Temas".
- E Selecione o **Tipo** de amostra: "Aquisição". As amostras poderão ser obtidas editando-se os contornos (modo **Poligonal** ou **Retangular**).
- F Adquirindo amostras no modo retangular:

- Clique em Retangular e ative o Cursor de Área 💾 no menu principal;
- Clique sobre a imagem para definir o ponto superior esquerdo da amostra, arraste diagonalmente para baixo e clique novamente para definir o ponto inferior direito da amostra;
- Clique em Adquirir. Observe que a amostra aparece na lista com um número e seu tipo (Aquisição);
- Repita as etapas acima para criar outros temas e outras amostras. Procure incluir dentro da amostras somente pixels que correspondam ao tema em questão. Adquira o máximo possível de amostras para um mesmo tema(água_1; água_2...água_5), pois quanto maior o número de amostras, bem escolhidas, mais precisa será a classificação para o tema;
- Clique em Salvar para armazenar as amostras e temas definidos.


Analisando as Amostras:

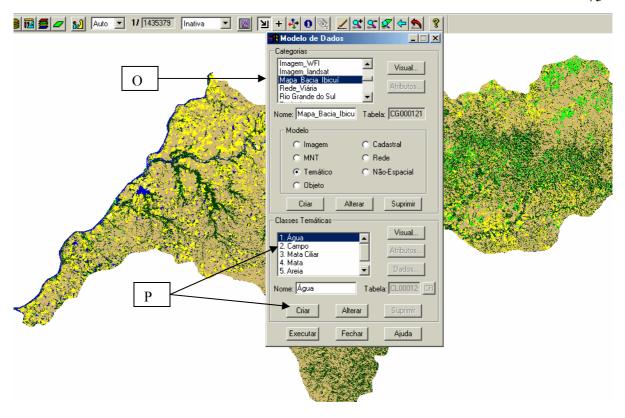
Podem-se analisar as amostras antes de executar a classificação propriamente dita.

- G Na janela Classificação clique em Classificação;
- H Digite o **Nome** a ser criado para imagem classificada e clique **Criar**;

I - Clique em **Analisar Amostras...** (Não é obrigatória a análise das amostras). Após alguns segundos será apresentada a janela **Análise de Amostras**. Verifique se não há confusão de amostras, procure deixar em 0%. (Ex: 1) Podes também, eliminar uma das amostras retornando ao Treinamento;

Neste exemplo tem-se a análise das amostras da classe "Urbano", observe que existe confusão com a classe "Solo". Tal ocorrência é esperada, pois o comportamento espectral destes alvos é próximo.

Exemplo - 1


J - Após analisar as amostras, decida o "Classificar" – *MAXVER*; *MAXVER-ICM*; *DISTÂNCIA EUCLIDIANA* (Obs: podes usar todos os classificadores e escolher o que melhor classificou). Para esta atividade usaremos o classificador *MAXVER* e o "Limiar de Aceitação" de 100%. E depois usaremos a *DISTÂNCIA EUCLIDIANA*.

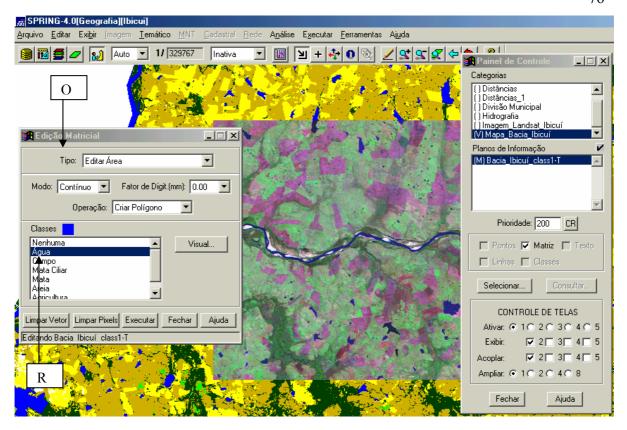
L - Clique em Classificar.

Veja o resultado selecionando o "Plano de Informação" no Painel de Controle.

Podes fazer uma análise da classificação, ative "Exibir" (tela 2) e "Acoplar" no Painel de Controle. Selecione as bandas (composição) ou uma e recomponha a imagem na tela 2. Na tela 1 uma área com o mouse e verifique a imagem classificada com as bandas.

Para o mapeamento da imagem classificada da bacia do rio Ibicuí proceda da seguinte maneira:

O - Em Modelo de Dados iremos criar uma "Categoria" de "ModeloTemático".


Para esse exemplo foi criado Mapa Bacia Ibicuí. Você pode dar outro nome.

P - Crie as "Classes Temáticas". Exemplo: Água, Campo, Mata Ciliar, entre outras. Selecione uma cor em "Visual" (Obs: Para cada **cor** selecionada clique em **OK** em Seleção de Cores e em Visuais de Apresentação Gráfica: **Executar**).

No menu principal clique em "Imagem" e "Mapeamento de Classes para Imagem Temática... " Na janela Mapeamento para Classes, selecione a categoria que foi criada anteriormente com as "Classes Temáticas". E associe a cada <u>tema</u> com as <u>classes</u>. Clique em **Executar.**

No Painel de Controle selecione os novos planos de informação.

Para melhorar a classificação pode-se usar a Edição Matricial em Temático. Acoplando a imagem (R-7G-4 B-2 ou uma das bandas-M) verifique as classes e se for necessário edite ou classifique.

- Q Em Edição Matricial selecione o tipo (Editar Área ou Classificar Área).
- R Selecione a classe a ser editada e verifique na imagem classificada o tema que corresponde a imagem de satélite. Crie um Polígono (Editar Área) ou com mouse clique sobre o pixel (Classificar Área).

ÁREA AGRÍCOLA: CULTIVO DO ARROZ

No Painel de Controle ative o plano de informação classificado e em "Selecionar..." ative somente área agrícola.

Conforme o IRGA (Instituto Rio Grandense do Arroz) o Rio Grande do Sul está dividido em seis regiões (fronteira oeste, campanha, depressão central, planície costeira interna a Lagoa dos Patos, planície costeira externa a Lagoa dos Patos e sul) de produção agrícola do arroz. A bacia do rio Ibicuí se encontra nas regiões da fronteira oeste e da campanha. Grande parte da produção de arroz do Estado está nesta área. (Tabela 1)

ARROZIRS: SAFRA 2.000/01

REGIÕES PRODUTORAS

REGIÃO	PRODUÇÃ0(t)	%
FRONTEIRA OESTE	1.607.163	30,37
CAMPANHA	1.000.584	18,91
ZONA SUL	897.391	16,96
DEPRESSÃO CENTRAL	768.811	14,53
PLANÍCIE COSTEIRA INTERNA	512.685	9,69
PLANÍCIE COSTEIRA EXTERNA	506.006	9,56
PRODUÇÃO TOTAL	5.292.640	100,00

Tabela 1 - Fonte: Instituto Rio Grandense de Arroz, 2002.

Estima-se que o Rio Grande do Sul é responsável por 45% da produção nacional de arroz, que corresponde a 270 mil hectares plantados e 11 milhões de toneladas produzidas, sendo hoje o arroz irrigado a principal atividade da metade sul do Estado, gerando em torno de 200 mil empregos diretos e indiretos. Na tabela 2 apresenta os cinco municípios maiores produtores de arroz nos anos de 2000/01.

Três	pertence	à	bacia	do	rio	Ibicuí.	Quais	são
eles?						е		

O Rio Grande do Sul caracteriza-se por ter um clima definido, limitando o cultivo do arroz irrigado aos meses de setembro a abril, com temperaturas médias de 22º C.

	Cidade	Produção(t)	%		
	URUGUAIANA	440.597	8,32		
2°	STA. VITÓRIA DO PALMAR	353.280	6,67		
3°	DOM PEDRITO	295.603	5,59		
4°	ALEGRETE	294.245	5,56		
5°	ITAQUÍ	293.270	5,54		

Tabela 2 - Fonte: Instituto Rio Grandense de Arroz, 2002.

Os outros municípios da bacia estão assim distribuídos:

26 ⁰	SÃO VICENTE DO SUL	58.200	1,10
43 ⁰	SÃO PEDRO DO SUL	22.359	0,42
50°	MANOEL VIANA	19.000	0,36
53 ⁰	SÃO FRANCISCO DE ASSIS	17.850	0,34
58 ⁰	JAGUARI	13.800	0,26
71 ⁰	MATA	8.250	0,16
115 ⁰	TOROPI	1.500	0,03
117 ⁰	NOVA ESPERANÇA DO SUL	1.380	0,03
122 ⁰	SÃO MARTINHO DA SERRA	662	0,01
OBS:	JARI	NÃO HÁ INFORMAÇÃO	
	QUEVEDOS		

Fonte: Instituto Rio Grandense de Arroz, 2002.

Acrescente essas informações na tabela dos municípios da bacia do rio lbicuí.

Vamos para última lição, que trataremos sobre a questão ambiental da bacia, principalmente sobre o rio Ibicuí. Queremos saber como estão as áreas de preservação permanente do rio, conforme a legislação em vigor.