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1 Section Heading
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X+ 0X— ax+ BxC = QgcosQt 1)

wherex = dx/dt is velocity. Qo andQ are excitation amplitude and frequency, respectivéig. damping
coefficient.a andf are linear and nonlinear stiffness coefficients of the Dgftiscillator.
however, for multiline equations we recommend to useettpear r ay environmert.
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Theorem 1. theorem
Proposition 2. theorem
Lemma 3. theorem
Corollary 4. theorem
Conjecture5. theorem

In mechanical engineering, in 1918, Duffing [1] presentezlttardening spring model to describe the
vibration of electro-magnetized vibrating beam. Sincenihthe Duffing oscillator has been extensively
used to describe nonlinear structural vibrations in stmattdynamics. In 1964, Hayashi [2] discussed
the approximate periodic solutions and the correspondiagilgy by the averaging method and harmonic
balance method. In 1973, Nayfeh [3] used the perturbatiothmdeto approximate periodic motion of the
Duffing oscillators (also see, Nayfeh and Mook [4]). In 19H&Imes [5] showed the strange attractors
of chaotic motions in nonlinear oscillators via the Duffingcitlator with a twin-well potential. In 1980,
Ueda [6] used numerical simulations to show chaotic motianperiod-doubling of periodic motions of
Duffing oscillators. In 1997, Luo and Han [7] analyticallyegented the stability and bifurcation conditions
of periodic motions of the Duffing oscillator. The constagtni of the analytical solution for the steady-
state motion of the Duffing oscillator was not consideredl986, Luo and Han [8] presented an improved
solution of the Duffing oscillator with a twin-well potentid-or analytical prediction of chaos, in 1999, Luo
and Han [9] investigated chaotic motions in nonlinear raduigh the Duffing oscillator. For the periodically
forced Duffing oscillator with damping, the analytical pieibn of periodic solutions is still very difficult.
In this paper, the analytical solutions of periodic motiovi be investigated and the analytical route of
periodic motions to chaos will be of great interest.

Third Harmonic Phase, ¢,

Excitation Frequency, Q

Fig. 1 The analytical prediction of periodic solutions based oa harmonic terms (HB3): (a) constant teag)
(b)-(d) harmonic amplitude&y (k = 1,2,3); and (e)-(f) harmonic phaség (k = 1,2) for right potential well.
(6=0.50=-100,8=10.0,Qp = 10.0).

To look for approximate analytical solution of nonlinearcifiator, such an issue started from La-
grange [10] to investigate the three-body problem as a imation of the two-body problem by the method
of averaging. In the end of the 19th century, Poincare [Lith&r developed the perturbation theory to inves-
tigate the motions of celestial bodies. In 1920, van der P2] ised the method of averaging to determine
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the periodic solutions of oscillation systems in circuligtil 1928, the asymptotic validity of the method of
averaging was not proved. In 1928, Fatou [13] gave the prbibfeoasymptotic validity through the solution
existence theorems of differential equations. In 1935,l¢ryBogoliubov and Mitropolsky [14] further
developed the method of averaging, and the detailed peggantvas given. In 1964, Hayashi [2] presented
the perturbation methods including averaging method aimgipte of harmonic balance. In 1969, Barkham
and Soudack [15] extended the Krylov-Bogoliubov methodtiier approximate solutions of nonlinear au-
tonomous second order differential equations (also seihBe and Soudack [16]). In 1987, a generalized
harmonic balance approach was used by Garcia-Margallo ejsddho [17] to determine approximate solu-
tions of nonlinear oscillations with strong nonlinearily.the same year, Rand and Armbruster [18] used the
perturbation method and bifurcation theory to determireestability of periodic solutions. In 1989, Yuste
and Bejarano [19] used the elliptic functions rather thagotrometric functions to improve the Krylov-
Bogoliubov method. In 1990, Coppola and Rand [20] used tleeaging method with elliptic functions
to determine approximation of limit cycle. In 1997, Luo andrH7] analytically studied the stability and
bifurcations of periodic solutions of Duffing oscillatodsrough the first order harmonic balance method,
and provided the analytical conditions for the Hopf and s&xadde bifurcations. To obtain accurate results
of periodic solutions in nonlinear vibration, many harnoterms are included in the harmonic balance
method. In 2008, Peng et al [21] presented the approximatedsg solution for the Duffing oscillator by
the HB3 method compared with the fourth-order Runge-Kutghwod. In 2011, Luo and Huang [22] further
discussed a generalized harmonic balance method to ohtaantlytical solution of period-1 motion. Luo
and Huang [23] also presented a generalized harmonic taethod to determine periad-solutions in
nonlinear oscillators.

In this paper, the generalized harmonic balance methodbwilised to investigate analytical periodic
motions in the periodically forced Duffing oscillator withtain-well potential. The bifurcation tree from
period-1 motions to chaos will be presented with varyingapaeters. The corresponding unstable periodic
motions in the Duffing oscillator will be presented for a betinderstanding of nonlinear dynamics in such
a Duffing oscillator. Numerical illustrations of stable amkstable periodic motions will be carried out.

2 Section Heading

From Eq.(1), the standard form is

X+ f(x,x,t) =0 (3)
2.1 Subsection Heading

The Fourier series expression of any periodic motion inineal systems needs infinite terms to give the
exact solution of such a periodic motion. In practice, itnmgpossible to do so. Thus, the truncated Fourier
series solutions will be used to give an approximate salutimt can be close to the exact solution. From
such approximate, analytical solutions, the equilibriusiuson of coefficient dynamical system for the
Fourier series of the periodic motion can be obtained fronf&aqising Newton-Raphson method, and the
stability and bifurcation analysis of the such equilibriggmints can be completed through the eigenvalue
analysis. The system parameters are

5=05,a =—100,8 = 10,Qy = 100 )
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The backbone curves of harmonic amplitude varying withtation frequencyQ are illustrated. The har-
monic amplitude and phase are defined by

o Ck/m
Agm = /b + Cﬁ/w Pkm = arctan% (5)
and the corresponding solution in Eq.(43) is
M, < k
X (t) =ay + zAk/mCOS<aQt_¢k/m> . (6)
k=1

In Luo and Han [8], one term harmonic term was consideredddod-1 motions for the large and small
orbit. In this paper, many harmonic terms will be consideiedchieve a more accurate prediction of the
periodic motions. For period-1 motion, the first three hanimnderms of the Fourier series expansion (HB3)
will be used to obtain the approximate periodic solutionse Eonstant termt()l) = ap and the first three
harmonic amplitudegy and phasegy(k = 1,2,3) versus excitation frequency are plotted in Fig.1(a)-(g),
respectively. A parameter map is presented in Fig.2.

The initial conditions for stable period-1 motio@ & 2.75), unstable period-1 motion and stable period-
2 motion @ = 2.753), unstable period-1 motion, unstable period-2 motion aathletperiod-4 motion
(Q =2.7537) are listed in Table 1.

Table 1 Input data for numerical simulations of periodic motigds= 0.5,a = —10.0, 3 = 10.0,Qp = 10.0)

Initial conditions(t = 0.0)

Q ’ Stability Periodm
X0 X0
Fig.10(a) 2.75 —0.724512 0.251206 Stable(HB) Period-1(HB5)
Fig.10(b) 2.75 —0.724512 0.251206 Stable(HB) Period-1(HB5)
Fig.10(c) 2.75 —0.724512 0.251206 Stable(HB) Period-1(HB5)
Fig.10(d) 2.75 —0.724512 0.251206 Stable(HB) Period-1(HB5)
Fig.10(e) 2.75 —0.724512 0.251206 Stable(HB) Period-1(HB5)
Fig.10(f) 2.75 —0.724512 0.251206 Stable(HB) Period-1(HB5)

3 Conclusions

In this paper, analytical routines of period-1 motions taahin the Duffing oscillator with a twin-potential
well were discussed comprehensively through the genethharmonic balance method. The analytical so-
lutions of periodm motions were developed by the Fourier series and the camegmy Hopf bifurcations

of periodic motions cause new periodic motions with periedibling. Three analytical routes of asymmet-
ric period-1 motions to chaos were developed. The apprdein@malytical periodic solutions were verified
via numerical simulations, and the analytical, unstableopé& motions were given as well. With exact
unstable periodic motion, the numerical simulations sthathy with the analytical solution if without any
computational errors. The analytical routes with unstgd@godic motions can lead us to find unstable
chaos.
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Fig. 2 A parameter map from the analytical prediction of periodiltisons based on three harmonic terms (HB3):
(a) Global view and (b) zoomed viewd & 0.5, = —10.0, 8 = 10,Qp = 10.0).
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