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1 Section Heading

Please note that the first line of text that follows a heading is not indented, whereas the first lines of all
subsequent paragraphs are.

Use the standardequation environment to typeset your equations, e.g.

ẍ+ δ ẋ−αx+ βx3 = Q0 cosΩt (1)

whereẋ = dx/dt is velocity. Q0 andΩ are excitation amplitude and frequency, respectively.δ is damping
coefficient.α andβ are linear and nonlinear stiffness coefficients of the Duffing oscillator.

however, for multiline equations we recommend to use theeqnarray environmenta.

a×b = c

~a·~b =~c (2)

†Corresponding author.
Email address: *@*

aIn physics texts please activate the class optionvecphys to depict your vectors inboldface-italic type - as is customary for a
wide range of physical subjects.
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Theorem 1. theorem

Proposition 2. theorem

Lemma 3. theorem

Corollary 4. theorem

Conjecture 5. theorem

In mechanical engineering, in 1918, Duffing [1] presented the hardening spring model to describe the
vibration of electro-magnetized vibrating beam. Since then, the Duffing oscillator has been extensively
used to describe nonlinear structural vibrations in structural dynamics. In 1964, Hayashi [2] discussed
the approximate periodic solutions and the corresponding stability by the averaging method and harmonic
balance method. In 1973, Nayfeh [3] used the perturbation method to approximate periodic motion of the
Duffing oscillators (also see, Nayfeh and Mook [4]). In 1979,Holmes [5] showed the strange attractors
of chaotic motions in nonlinear oscillators via the Duffing oscillator with a twin-well potential. In 1980,
Ueda [6] used numerical simulations to show chaotic motion via period-doubling of periodic motions of
Duffing oscillators. In 1997, Luo and Han [7] analytically presented the stability and bifurcation conditions
of periodic motions of the Duffing oscillator. The constant term of the analytical solution for the steady-
state motion of the Duffing oscillator was not considered. In1996, Luo and Han [8] presented an improved
solution of the Duffing oscillator with a twin-well potential. For analytical prediction of chaos, in 1999, Luo
and Han [9] investigated chaotic motions in nonlinear rod through the Duffing oscillator. For the periodically
forced Duffing oscillator with damping, the analytical prediction of periodic solutions is still very difficult.
In this paper, the analytical solutions of periodic motionswill be investigated and the analytical route of
periodic motions to chaos will be of great interest.

Fig. 1 The analytical prediction of periodic solutions based on two harmonic terms (HB3): (a) constant terma0;
(b)-(d) harmonic amplitudesAk(k = 1,2,3); and (e)-(f) harmonic phasesϕk (k = 1,2) for right potential well.
(δ = 0.5,α = −10.0,β = 10.0,Q0 = 10.0).

To look for approximate analytical solution of nonlinear oscillator, such an issue started from La-
grange [10] to investigate the three-body problem as a perturbation of the two-body problem by the method
of averaging. In the end of the 19th century, Poincare [11] further developed the perturbation theory to inves-
tigate the motions of celestial bodies. In 1920, van der Pol [12] used the method of averaging to determine
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the periodic solutions of oscillation systems in circuits.Until 1928, the asymptotic validity of the method of
averaging was not proved. In 1928, Fatou [13] gave the proof of the asymptotic validity through the solution
existence theorems of differential equations. In 1935, Krylov, Bogoliubov and Mitropolsky [14] further
developed the method of averaging, and the detailed presentation was given. In 1964, Hayashi [2] presented
the perturbation methods including averaging method and principle of harmonic balance. In 1969, Barkham
and Soudack [15] extended the Krylov-Bogoliubov method forthe approximate solutions of nonlinear au-
tonomous second order differential equations (also see, Barkham and Soudack [16]). In 1987, a generalized
harmonic balance approach was used by Garcia-Margallo and Bejarano [17] to determine approximate solu-
tions of nonlinear oscillations with strong nonlinearity.In the same year, Rand and Armbruster [18] used the
perturbation method and bifurcation theory to determine the stability of periodic solutions. In 1989, Yuste
and Bejarano [19] used the elliptic functions rather than trigonometric functions to improve the Krylov-
Bogoliubov method. In 1990, Coppola and Rand [20] used the averaging method with elliptic functions
to determine approximation of limit cycle. In 1997, Luo and Han [7] analytically studied the stability and
bifurcations of periodic solutions of Duffing oscillators through the first order harmonic balance method,
and provided the analytical conditions for the Hopf and saddle-node bifurcations. To obtain accurate results
of periodic solutions in nonlinear vibration, many harmonic terms are included in the harmonic balance
method. In 2008, Peng et al [21] presented the approximate period-1 solution for the Duffing oscillator by
the HB3 method compared with the fourth-order Runge-Kutta method. In 2011, Luo and Huang [22] further
discussed a generalized harmonic balance method to obtain the analytical solution of period-1 motion. Luo
and Huang [23] also presented a generalized harmonic balance method to determine period-m solutions in
nonlinear oscillators.

In this paper, the generalized harmonic balance method willbe used to investigate analytical periodic
motions in the periodically forced Duffing oscillator with atwin-well potential. The bifurcation tree from
period-1 motions to chaos will be presented with varying parameters. The corresponding unstable periodic
motions in the Duffing oscillator will be presented for a better understanding of nonlinear dynamics in such
a Duffing oscillator. Numerical illustrations of stable andunstable periodic motions will be carried out.

2 Section Heading

From Eq.(1), the standard form is

ẍ+ f (x, ẋ, t) = 0 (3)

2.1 Subsection Heading

The Fourier series expression of any periodic motion in nonlinear systems needs infinite terms to give the
exact solution of such a periodic motion. In practice, it is impossible to do so. Thus, the truncated Fourier
series solutions will be used to give an approximate solution that can be close to the exact solution. From
such approximate, analytical solutions, the equilibrium solution of coefficient dynamical system for the
Fourier series of the periodic motion can be obtained from Eq.(3) using Newton-Raphson method, and the
stability and bifurcation analysis of the such equilibriumpoints can be completed through the eigenvalue
analysis. The system parameters are

δ = 0.5,α = −10.0,β = 10,Q0 = 10.0 (4)
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The backbone curves of harmonic amplitude varying with excitation frequencyΩ are illustrated. The har-
monic amplitude and phase are defined by

Ak/m ≡

√

b2
k/m+c2

k/m,ϕkm = arctan
ck/m

bk/m
(5)

and the corresponding solution in Eq.(43) is

x∗(t) = a(m)
0 +

N

∑
k=1

Ak/mcos

(

k
m

Ωt −ϕk/m

)

. (6)

In Luo and Han [8], one term harmonic term was considered for period-1 motions for the large and small
orbit. In this paper, many harmonic terms will be consideredto achieve a more accurate prediction of the
periodic motions. For period-1 motion, the first three harmonic terms of the Fourier series expansion (HB3)
will be used to obtain the approximate periodic solutions. The constant terma(1)

0 ≡ a0 and the first three
harmonic amplitudesAk and phasesϕk(k = 1,2,3) versus excitation frequency are plotted in Fig.1(a)-(g),
respectively. A parameter map is presented in Fig.2.

The initial conditions for stable period-1 motion (Ω = 2.75), unstable period-1 motion and stable period-
2 motion (Ω = 2.753), unstable period-1 motion, unstable period-2 motion and stable period-4 motion
(Ω = 2.7537) are listed in Table 1.

Table 1 Input data for numerical simulations of periodic motions(δ = 0.5,α = −10.0,β = 10.0,Q0 = 10.0)

Ω
Initial conditions(t = 0.0)

Stability Period-m
x0 ẋ0

Fig.10(a) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

Fig.10(b) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

Fig.10(c) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

Fig.10(d) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

Fig.10(e) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

Fig.10(f) 2.75 −0.724512 0.251206 Stable(HB) Period-1(HB5)

3 Conclusions

In this paper, analytical routines of period-1 motions to chaos in the Duffing oscillator with a twin-potential
well were discussed comprehensively through the generalized harmonic balance method. The analytical so-
lutions of period-m motions were developed by the Fourier series and the corresponding Hopf bifurcations
of periodic motions cause new periodic motions with period-doubling. Three analytical routes of asymmet-
ric period-1 motions to chaos were developed. The approximate, analytical periodic solutions were verified
via numerical simulations, and the analytical, unstable periodic motions were given as well. With exact
unstable periodic motion, the numerical simulations should stay with the analytical solution if without any
computational errors. The analytical routes with unstableperiodic motions can lead us to find unstable
chaos.
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Fig. 2 A parameter map from the analytical prediction of periodic solutions based on three harmonic terms (HB3):
(a) Global view and (b) zoomed view. (δ = 0.5,α = −10.0,β = 10,Q0 = 10.0).
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