Space Systems Dependability The hybrid (modelling) necessity

Jean-Paul Blanquart

ASTRIUM Satellites

Jean-paul.blanquart@astrium.eads.net

5th Latin-American Symposium on Dependable Computing

INPE, São José dos Campos, Brazil, April 25-29, 2011

Outline

- A few words about EADS, Astrium, ...
- Dependability in space
 - Constraints, needs, solutions, achievements
- Dependability (FDIR) process
- Model Based Dependability
 - Engineering, Assessment
- Why it may become so complicated?

EADS European Aeronautic Defense and Space

Astrium is a global space industry leader, with world-class expertise and extensive prime contractorship experience across all sectors of the space business

Astrium Space Transportation

The European prime contractor for civil and military space transportation and manned space activities

Astrium Satellites

A world leader in the design and manufacture of satellite systems

Astrium Services

At the forefront of satellite services in the secure communications, Earth observation and navigation fields

Outline

- A few words about EADS, Astrium,
- Dependability in space
 - Constraints, needs, solutions, achievements
- Dependability (FDIR) process
- Model Based Dependability
 - Engineering, Assessment
- Why it may become so complicated?

Space systems: Constraints

- Limited mass, power
- Limited ground-board link
- Limited maintenance
- Radiations
- Knowledge, mastering of the environment
- Phased missions, critical parts
- Long lifetime

A large variety of dependability needs

- Reliability
 - Lifetime (satellites, space probes)
 - Continuity of service (launchers, rendez-vous, re-entry)
- Availability
 - Instantaneous (satellite, probes critical phases, launchers)
 - Average (Mission return)
 - Outage duration, frequency (critical or expensive services)
- Maintainability, adaptation (reconfiguration, software, procedures)
- Safety (Launchers, manned flights, rendez-vous, end of life)
- Security

Solutions, basic principles

- Selective redundancy, hot or more often cold duplex
 - Some notable examples of comparison and vote
- Automatic detection and reconfiguration (FDIR)
- Safe mode
- "Favourite" adversaries
 - Single point of failures, common cause failures, failure propagation
 - Unpredicted situations, lack of observability, controllability

Computer failure (cold duplex)

Figure 7.1.1.3/1: SCU Architecture

Figure 7.1.1.3/2: MRE architecture

Launcher (Ariane 5) OBC1 inter-computers OBC2 alarm İink (Backup) (Master) Remote Remote unit 1 unit 1 (backup) (nominal) SdC (MI. Std. 1553B) Remote Remote unit n unit n (nominal) (backup) Umbilical to launchpad -+ Safety

Hot-Duplex, semi-cross-strapped, one-shot

Manned automatic vehicles (projects)

ATV (Automatic Transfer Vehicle)

ATV Fault Tolerant Computer

And it works...

Indicative values, from public data (up to 2005) No pretention as strongly substantiated statistics

Launchers

Satellites

- "~10⁻⁶/h" 2xlifetime, 90%>
- But:
 - Launch: 6-7%
 - In-orbit installation: 4-5%
 - Early phase: 1.5 10⁻⁶/h
 Life: 0.5 10⁻⁶/h

Outline

- A few words about EADS, Astrium,
- Dependability in space
 - Constraints, needs, solutions, achievements
- Dependability (FDIR) process
- Model Based Dependability
 - Engineering, Assessment
- Why it may become so complicated?

Dependability process (FDIR)

Events → HW?SW?GCC?

REQUIREMENTS

- One Failure tolerant design
- $R(t) \ge 0.8$
- $D(t) \ge 0.99$
- Autonomy ...

- REQUIREMENTS
- ARCHITECTURE
- Modes versus "failures"
- HIERARCHY
- FD/I/R Management

GCC: Ground Control Centre

Events → HW?SW?GCE?

Failures Management

- DETECTION

How? Which parameters? Frequency?...

- ISOLATION

Protections, Time to react ?...

- RECOVERY

Which actions? Who executes?...

FDIR analysis

REQUIREMENTS

<u>RAMS_001</u> « Every failure likely to propagate shall be detected in appropriate time in order to avoid propagation to another reliability block (as defined in teh reliability block diagram) »

« Every failure with criticality 1 shall trigger a safe mode »

STRATEGY

DESIGN

To the grant and in the re
To the grant and in the re
To the grant and in the re
To the grant and in t

RAMS 101

« An electrical protection shall protect the spacecraft from any short-circuit down-stream

RAMS 151 « In order to detect ASH control failure during stabilization phase, the OBSW shall monitor the duration of the stabilization phase. Triggering of this surveillance shall lead to ARO. (URD.AOCS.ASH.FDIR.0100)

V&V

FDIR lifecycle

Outline

- A few words about EADS, Astrium,
- Dependability in space
 - Constraints, needs, solutions, achievements
- Dependability (FDIR) process
- Model Based Dependability
 - Engineering, Assessment
- Why it may become so complicated?

- Quantitative (probabilistic) analysis of RAMS properties
 - Modelling the impact of faults/failures on the level of performance Markov, RBD, ...
- Qualitative analysis of faults/failures propagation
 - Modelling the impact and propagation of faults/failures on on the architecture (physical, functional, ...)
 Structural models, AADL, ...
- Assessment (correctness, performance) of FDIR
 - Modelling the behaviour of the FDIR
 State machines, temporised automata, model-checking, ...
- Soundness, completeness of the safety, dependability arguments
 - Modelling the dependability and safety argumentation Logical formulas, GSN, ...

Main types of dependability models

- Behaviour (in presence of faults)
 - Needs for an appropriate abstraction of the behaviour
 - Behaviour of the system (functional, « dys-functional »)
 - Behaviour of the fault processing mechanisms
 - Assembly of functional blocks (on, off, failed, ...)
- Architecture and fault propagation
 - Explicit representation of fault propagation, with an abstraction of the behaviour
- Coupling behavioural and structural models
 - At least for FDIR mechanisms
 - Impact of faults on behaviour
 - Impact of reconfigurations on behaviour

Quite an old story with limitations and solutions

Fault Trees

Cf. Ana-Elena Rugina PhD, 2007

Main advantages

- Support to model creation, discussion, validation
- Additional capabilities (property validation, ...)
- Easier updates
- Coupling with other models

- Could/should we go further?
 - What about correctness of fault tolerance mechanisms?

Objectives & Constraints

Need: Model the system dynamics in the presence of faults

- Define a modelling technique
 - Express faults and failures propagation
 - Specify Fault, Detection, Isolation and Recovery mechanisms
- Demonstrate properties on Dependability/FDIR
- Appropriate modelling languages & tools

Requirements on modelling techniques (1/2)

- Deployment on resources
- Functional dependencies
- Spread FDIR functions
- FDIR Hierarchy

Functional & Dysfunctional time constraints

Requirements on modelling techniques (2/2)

Design objectives

- Simple (compositional) modelling method
- Close to the engineering model

Architecture/Behaviour (AADL)

- Deployment on resources
- Functional dependencies
- Spread FDIR functions
- FDIR Hierarchy
- Time constraints

Validation objectives

Demonstration

Modelling method – Dependability pattern

Modelling method

Model transformation

Model reduction – fault isolation

Model reduction – Step by step validation

Find the earliest **Find**: the thie true at t

Slowest recovery time(t2) < Fastest propagation time(t1)

Find the latest t2 such that

To summarize...

Systematic modelling method for dependability and FDIR

- Compositional (dependability pattern)
- Incremental (functional, dependability and FDIR layers)
- Extensible (enhancement of deduced propagation paths)
- Demonstrable (model simulation and model checking)
- Complex propagation, common mode faults, external events, ...

Method improvements

- Model reduction techniques, possibly resolution techniques
- Complete libraries (fault models, failure modes, propagation rules)

• Integration into company's processes

- Articulation of FDIR, Dependability, Engineering processes
- Place of simulation, formal validation
- Tools, methods benchmarking, training

Outline

- A few words about EADS, Astrium,
- Dependability in space
 - Constraints, needs, solutions, achievements
- Dependability (FDIR) process
- Model Based Dependability
 - Engineering, Assessment
- Why it may become so complicated?

Hybrid models

- Structure / Behaviour
- Behaviour: Discrete logic + continuous
 - Decoupling possible but based on a priori hypotheses which must be validated, cannot be exhaustive, hardly systematic and anyway limited by the actual interactions
 - Interest of coupling, integrating models
 - Limitations of current tools and even theoretical framework to support comprehensive and accurate simulations... and even more proofs

Why we need at least time(s)

- Explicitly used by FDIR mechanisms (implicit coupling, enforcement of the desired organisation, sequencing, hierarchy)
- Sort of "pivot" notion between the discrete logics and the continuous physical phenomena
- Explicit incorporation of the temporal characteristics of failures
 - Transient, intermittent...
 - Possibly some other interesting though speculative ideas about time and failures

Time and failures

- Notion of resistance, during some time, to faults
 - Explicit property in security
 - Less usual though possibly interesting for accidental faults
 - See also the built-in resistance to exceptional environmental conditions
- Notion of "trajectory of failures"
 - "Mortal Byzantine", cf. Josef Widder, Martin Biely, Günther Griddling, Bettina Weiss, TU Wien, DSN 2007
- Notion of safety margin for dynamic systems
 - On-going PhD by Amina Mekki-Mokhtar (LAAS-CNRS, Toulouse, Supervised by D. Powell, J. Guiochet)

It is a long way to space

Factory,

Road...

No source of failure should be overlooked

Space Systems Dependability The hybrid (modelling) necessity

Jean-Paul Blanquart

ASTRIUM Satellites

Jean-paul.blanquart@astrium.eads.net

5th Latin-American Symposium on Dependable Computing

INPE, São José dos Campos, Brazil, April 25-29, 2011

