

I ESCUELA DE PRIMAVERA SOBRE SOLUCIONES ESPACIALES PARA EL MANEJO DE DESASTRES NATURALES Y RESPUESTAS DE EMERGENCIAS-INUNDACIONES

EL CÁLCULO DEL ESCURRIMIENTO SUPERFICIAL EN ÁREAS URBANAS UTILIZANDO GEOPROCESSAMIENTO

Prof. Alfonso Risso

Eng. Civil Lidiane Souza Gonçalves

Eng. Civil Ferdnando Cavalcanti da Silva

Instituto de Pesquisas Hidráulicas – IPH
Universidade Federal do Rio Grande do Sul - UFRGS

Introducción

Caudal de Diseño – Escurrimiento Potencial

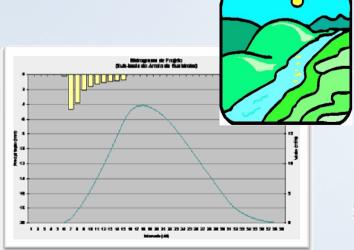
Datos observados en cuencas urbanas

Métodos sintéticos de transformación lluvia-caudal

Introducción

Modelo SCS (Soil Conservation Service) → Simulación del hidrograma dis

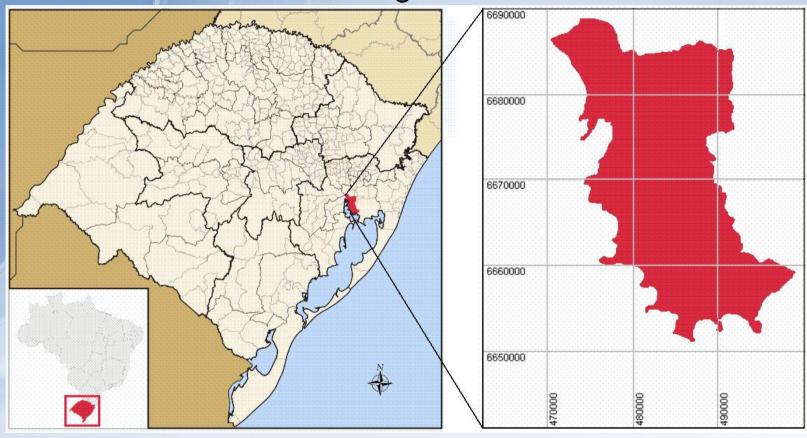
 Image: Conservation Service
 Image: Conservation S



Características de la cuenca

Introducción

CN – inexistencia de datos → estimativas sin calibración, basadas en datos disponibles en mapas de uso, fotografías aéreas, imágenes de satelitales.


Teledetección y SIG con sus ventajas (evaluación espacial, espectral y temporal, manipulación de datos en grandes áreas e inaccesibles) -> herramienta común para estimar parámetros hidrológicos.

Mapa con valores del parámetro CN distribuido para la ciudad de Porto Alegre – RS/Brasil

- → Evaluar rapidez y exactitud.
- → Herramienta para simulación de escenarios y gestión territorial.

Metodología

Área de estudio: Porto Alegre – RS/Brasil

Área total: 476 km²

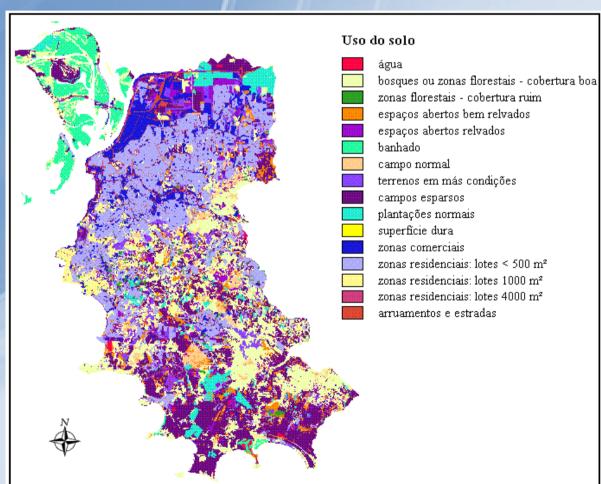
Metodología SIG-SR

- Elaboración del mapa de CN
- Uso/ocupación del suelo
- Tipo de suelo

Digitalización y clasificación de imágenes satelitales:

LABGEO - Centro de Recursos IDRISI del Centro de Ecología de la UFRGS

- Uso/ocupación : 30 clases → reclasificado en 16 clases
- Tipo suelo: 16 tipos → agrupados: 4 grupos hidrológicos (A,B,C,D) según la clasificación de Sartori et al., 2006

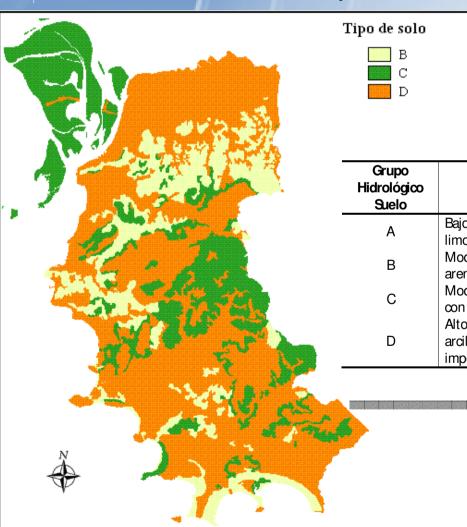


Metodología

Elaboración del mapa de CN

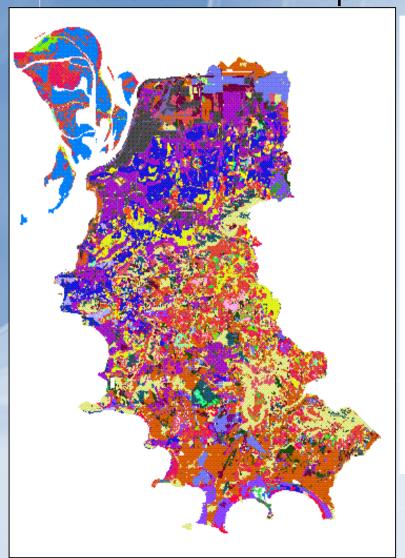
- Uso/ocupación del suelo

ipo de suelo


llee de eusle	funciónsia
Uso do suelo	freqüência
Agua	0,62%
 Bosques o zonas forestales buena 	
cobertura	22,09%
•Zonas forestales mala cobertura	•0,63%
•Espacios abiertos, buena cobertura	
de gramíneas	•3,86%
•Espacios abiertos, mediana	
cobertura de gramíneas	•4,00%
•Humedales	•5,40%
•Campo normal	•2,62%
•Terrenos en malas condiciones	•3,87%
•Campo sucio	19,83%
•Plantación normal	3,95%
•Superficie dura	0,10%
•Zonas comerciales	6,66%
•Zonas residenciales: lotes < 500 m²	21,16%
•Zonas residenciales: lotes 1000 m²	2,07%
•Zonas residenciales: lotes 4000 m²	0,47%
•Calles y caminos	2,67%
Total	100%

Metodologia

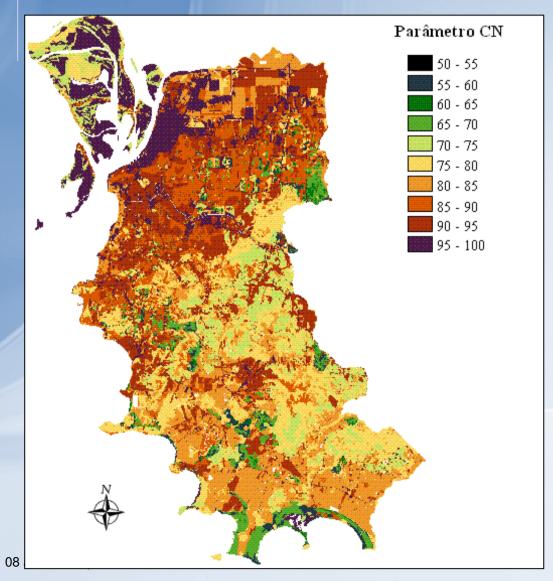
• Elaboración del mapa de CN


- Uso/ocupação do suelo
- Tipo de suelo

Grupo Hidrológico Suelo	Descripción del Suelo	Conductividad Hidráulica (mm/ h)
А	Bajo potencial de escurrimiento. Suelos arenosos con poco limo y arcilla. Suelos muy arenosos	8 - 12
В	Moderado a bajo potencial de escurrimiento. Suelos arenosos y francos, menos profundos que A	4 - 8
С	Moderado a alto potencial de escurrimiento. Suelos rasos con significativa cantidad de arcilla.	1 - 4
D	Alto potencial de escurrimiento. Suelos con gran cantidad de arcillas expansivas 2:1 y suelos con camada inferior impermeable.	0 - 1

Metodología

• Elaboración del mapa de CN Uso/ocupación X Tipo de suelo



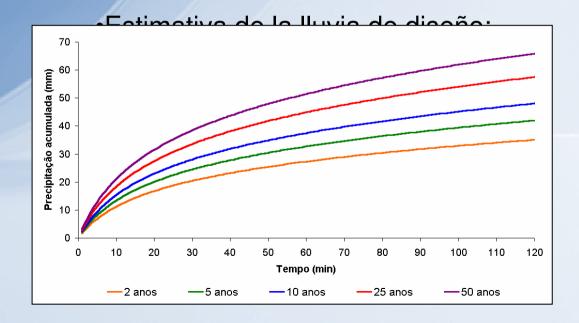
e CN Uso/ocupació	on X Tipo de suelo
Tipo de solo x uso do solo	
Tipo de solo x uso do solo Solo B - Bosques ou zonas florestais cobertura boa Solo B - Zonas florestais cobertura ruim Solo B - Espaços abertos, bem relvados Solo B - Espaços abertos, relvados Solo B - Banhado Solo B - Campo normal Solo B - Pastagens ou terrenos em más condições Solo B - Campos esparsos Solo B - Plantações normais Solo B - Superficie dura Solo B - Zonas comerciais Solo B - Zonas residenciais: lotes < 500 m² Solo B - Zonas residenciais: lotes 4000 m² Solo B - Zonas residenciais: lotes 4000 m² Solo B - Arruamentos e estradas	Solo C - Arruamentos e estradas Solo D - Bosques ou zonas florestais cobertura boa Solo D - Zonas florestais cobertura ruim Solo D - Espaços abertos, bem relvados Solo D - Espaços abertos, relvados Solo D - Banhado Solo D - Campo normal Solo D - Pastagens ou terrenos em más condições
Solo C - Bosques ou zonas florestais cobertura boa Solo C - Zonas florestais cobertura ruim Solo C - Espaços abertos, bem relvados Solo C - Espaços abertos, relvados Solo C - Banhado Solo C - Campo normal Solo C - Pastagens ou terrenos em más condições Solo C - Campos esparsos Solo C - Plantações normais Solo C - Superficie dura Solo C - Zonas comerciais Solo C - Zonas residenciais: lotes < 500 m² Solo C - Zonas residenciais: lotes 1000 m²	

Resultado

• Mapa de CN

Parâmetro CN	área (km²)	freqüência
50 - 55	9,14	1,92%
55 - 60	1,80	0,38%
60 - 65	3,51	0,74%
65 - 70	57,72	12,13%
70 - 75	9,10	1,91%
75 - 80	107,25	22,53%
80 - 85	115,66	24,30%
85 - 90	39,99	8,40%
90 - 95	93,57	19,66%
95 - 100	38,26	8,04%
Total	476,00	100%

Aplicación


Utilizando el programa IPHS1 → Subcuenca del Arroyo Guabiroba – POA

http://www.iph.ufrgs.br/iphs1/

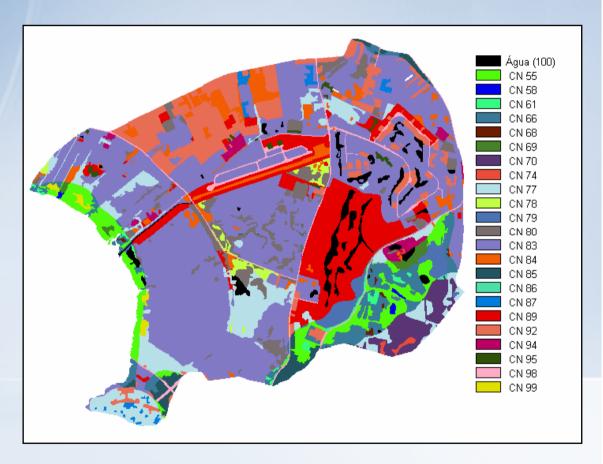
•Levantamiento de las características físicas de la cuença:

Subcuenca	Área (km²)	Largo de Talvegue (km)	Desnivel (m)	Pendiente (m/m)	Tiempo de Concentración (min)	(_2 \ 0,385
Arroio Guabiroba	10,47	4,43	7,4	0,00167	147	$\Rightarrow tc = 57 \left(\frac{L^3}{H}\right)^{0.555}$

Kirpich

Relación IDF puesto IPH (POA):

$$i = \frac{509,859 \times Tr^{0,196}}{(t+10)^{0,72}}$$

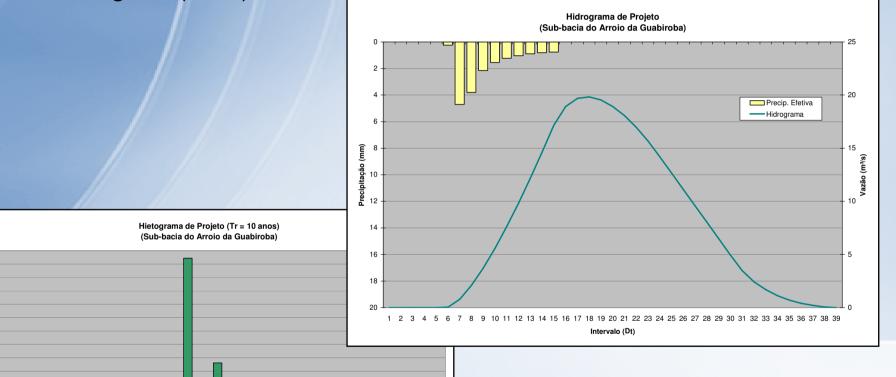


Aplicación

•Cálculo del escurrimiento directo o precipitación efectiva – SCS:

$$CN_{promédio} = rac{\displaystyle\sum_{i=1}^{n} A_i \times CN_i}{\displaystyle\sum_{i=1}^{n} A_i}$$

<u> </u>		
CN _i	Área A _i (km²)	A _i x CN _i
55	0,475	26,13
58	0,012	0,70
61	0,052	3,17
66	0,37	24,42
68	0,012	0,82
69	0,05	3,45
70	0,217	15,19
74	0,016	1,18
77	0,814	62,68
78	0,084	6,55
79	0,159	12,56
80	0,507	40,56
83	4,393	364,62
84	0,393	33,01
85	0,142	12,07
86	0,003	0,26
87	0,064	5,57
89	1,087	96,74
92	0,886	81,51
94	0,104	9,78
95	0,04	3,80
98	0,222	21,76
99	0,031	3,07
100	0,334	33,40
Σ	10,467	862,99
CN promédio		82,449



Aplicación

•Estimativa del hidrograma de diseño – Hidrograma Unitario

Triangular (HUT) SCS.

Conclusiones

- •Metodología simples que resulta en importante subsidio para simulaciones con el modelo SCS.
- •Reducción en la cantidad de informaciones necesarias al hidrólogo de diseño.
- •Uniformidad en la estimativa del parámetro CN, evitando subjetividad en esta etapa.
- Mapa CN de Porto Alegre disponible en:

Diagnóstico ambiental de Porto Alegre – Pref. Municipal de Porto Alegre - SMAM http://galileu.iph.ufrgs.br/collischonn/ClimaRH/noticias/noticias.htm

Agradecimentos

- •Instituto de Pesquisas Hidráulicas IPH/UFRGS
- LABGEO/UFRGS (Prof. Heinrich Hasenack)
- Prefeitura Municipal de Porto Alegre
- Secretaria Municipal de Meio Ambiente
- •CNPq

Grácias por su atención!

Contacto: risso@iph.ufrgs.br

Modelo Lluvia/Caudal de SCS o CN

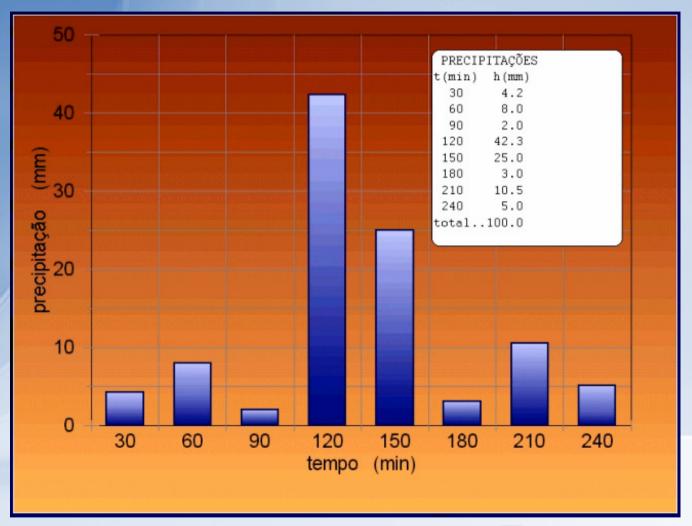
Lluvia Efectiva

Es un modelo utilizado para:

 determinar la lluvia excedente a partir de un valor de lluvia total dado (observada o estimada);

• calcular, a partir de la lluvia excedente, el hidrograma de escurrimiento superficial directo.

Fue desarrollado en 1972 por el Soil Conservation Service y es uno de los modelos mas utilizados en aplicaciones prácticas debido a su simplicidad, facilidad de aplicación y calidad de sus resultados.



Lluvia Total

Ejemplo de entrada manual:

Estimativa de una lluvia de diseño Relación Intensidad-Duración-Frecuencia

Fornecen la intensidad pluviométrica (i) (mm/min) o lamina precipitada (mm) como función de la duración de la lluvia (t) y de su periodo de retorno (Tr)

Duración de la lluvia de diseño (t):

- Cuencas pequeñas (hasta 5 km²) t = tc (tc = tiempo de concentración de la cuenca)
- Cuencas mayores t = 24 horas

Observación: con los modelos computacionales disponibles (IPHS1) es muy rápido variar los valores de (t) y evaluar los caudales resultantes.

Periodo de Retorno o Recurrencia (Tr):

- es el intervalo promedio de ocurrencia (en años) entre eventos que igualan o superan una dada magnitud
- el inverso do periodo de retorno (1/Tr) es la probabilidad de que un evento sea igualado o superado en un cualquier año

Periodo de Retorno (T): valores usuales

Tipo de Ocupación de la Cuenca Diseño T (años)

Residencial micro 2

Comercial, Aeropuertos, etc.micro 5

Grandes arterias de transito micro 5-10

Residenciales y comerciales macro 50-100

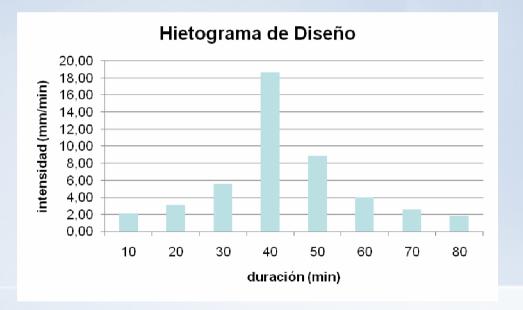
Áreas especiales macro >500

Distribución Temporal

- La distribución temporal de los volúmenes precipitados condicionará el volumen infiltrado y la forma del hidrograma de escurrimiento superficial directo originado por la chuva excedente.
- Formas mas utilizadas para distribuir la lluvia temporalmente: Método de los Bloques Alternados y Método de Chicago.

Ejemplo: Método de los bloques alternados

• Ejemplo: tormenta de diseño para la ciudad de Porto Alegre, com duração de 80 minutos (tc), con intervalos de tiempo de 10 minutos y periodo de retorno (Tr) de 5 años (relación intensidad-duración-frecuencia para POA).


$$i = \frac{1265,67 \cdot Tr^{0,052}}{(0,88)}$$

→ relación intensidad-duración-frecuencia para

POA

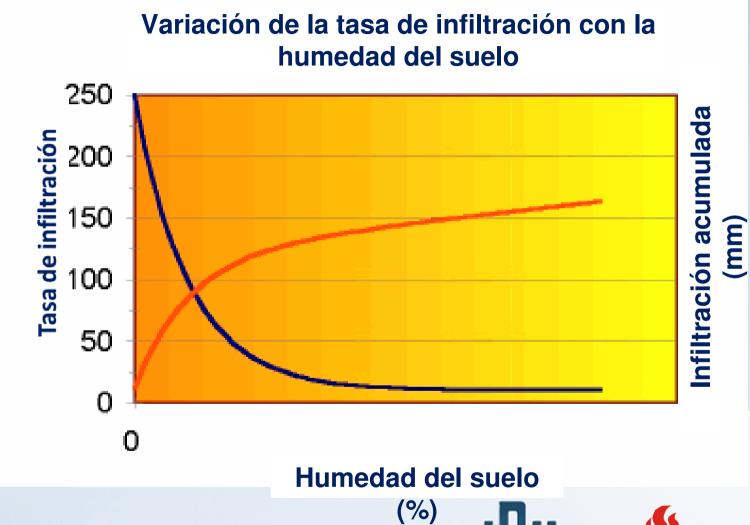
$(12+t)^{\left(\frac{0.88}{Tr^{0.05}}\right)}$

Δt	i	h(ac)	h _n -h _{n-1}	altern.
10	111,86	18,64	18,64	2,13
20	82,52	27,51	8,86	3,10
30	66,17	33,08	5,58	5,58
40	55,63	37,09	4,00	18,64
50	48,23	40,19	3,10	8,86
60	42,72	42,72	2,52	4,00
70	38,44	44,84	2,13	2,52
80	35,01	46,68	1,83	1,83
				46,68

Infiltración

Conceptos

- Infiltración: penetración del agua en el suelo
- Tasa de Infiltración: velocidad o intensidad de la penetración del agua en el suelo (mm/hora, mm/dia, etc.)
- Infiltración acumulada: cantidad de agua total infiltrada al final de un determinado tiempo (mm)


Factores que influyen en la infiltración:

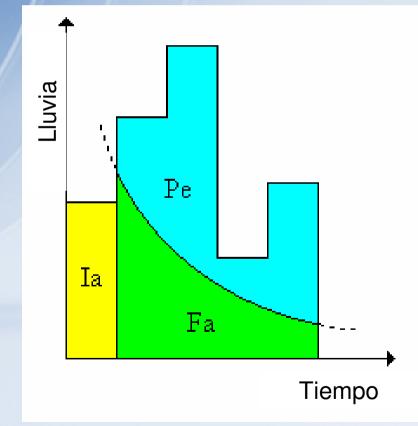
- humedad del suelo
- geología
- ocupación del suelo
- topografía

Infiltração

Lluvia Excedente Modelo SCS

Conceptos:

- P: Iluvia total
- Pe: Iluvia excedente
- · la: infiltración inicial
- Fa: infiltración después del inicio del escurrimiento superficial directo
- S: potencial máximo de infiltración



Hipótesis del SCS:

$$\frac{Fa}{5} = \frac{Pe}{P - Ia}$$

Continuidad:

$$P = Pe + Ia + Fa$$

Combinando las dos ecuaciones e aislando Pe:

$$P = Pe + Ia + \frac{Pe \cdot S}{P - Ia}$$

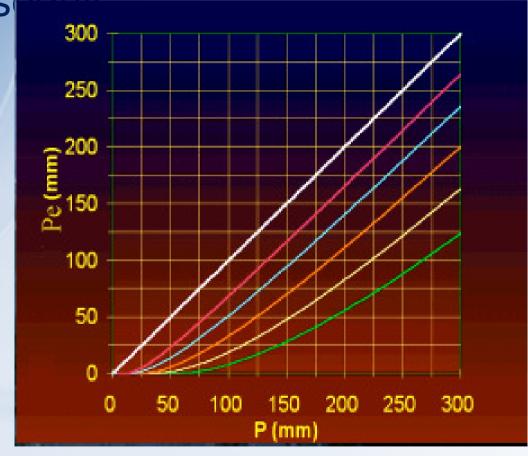
$$P-Ia=Pe\cdot\left(\frac{P-Ia+S}{P-Ia}\right)$$

$$\therefore Pe = \frac{(P - Ia)^2}{P - Ia + 5}$$

Estudiando los resultados de diversas cuencas, el SCS llego a esta relación:

$$Ia = 0.2 \cdot 5$$

$$Ia = 0,2 \cdot 5$$
 Si $P \le Ia$, $Pe = 0$


Substituyendo en la ecuación anterior:

$$Pe = \frac{(P-0.2 \cdot 5)^2}{P+0.8 \cdot 5}, P > (0.2 \cdot 5)$$

Graficando los valores de P y Pe para diversas cuencas, SCS obtuvo las relaciones mostradas

en la figura a seguir

Para parametrizar estas curvas, SCS crió un adimensional denominado CN ("curve number"), que posee las siguientes propiedades:

- para áreas impermeables CN = 100
 - para otras superficies CN < 100

El número de la curva CN y la infiltración potencial S están relacionados a través de la expresión:

$$S(mm) = 25,4 \cdot \left(\frac{1000}{CN} - 10\right)$$

Valores de CN

Tipo de uso do solo/Tratamento/	Grupo Hidrológico			
Condições hidrológicas		В	С	D
Uso Residencial Tamanho médiodo lote % Impermeável até 500 m² 65 1000 m² 38 1500 m² 30	77 61 57	85 75 72	90 83 81	92 87 86
Estacionamentos pavimentados, telhados	98	98	98	98
Ruas e estradas: pavimentadas, com guias e drenagem com cascalho de terra	98 76 72	98 85 82	98 89 87	98 91 89
Áreas comerciais (85% de impermeabilização)	89	92	94	95
Distritos industriais (72% impermeável)	81	88	91	93
Espaços abertos, parques, jardins: boas condições, cobertura de grama > 75% condições médias, cobertura de grama > 50%		61 69	74 79	80 84
Terreno preparado para plantio, descoberto Plantio em linha reta	77	86	91	94

39

Grupos Hidrológicos de Suelos

Grupo Hidrológi∞ Suelo	Descripción del Suelo	Conductividad Hidráulica (mm/ h)
А	Bajo potencial de escurrimiento. Suelos arenosos con poco limo y arcilla. Suelos muy arenosos	8 - 12
В	Moderado a bajo potencial de escurrimiento. Suelos arenosos y francos, menos profundos que A	4 - 8
С	Moderado a alto potencial de escurrimiento. Suelos rasos con significativa cantidad de arcilla.	1 - 4
D	Alto potencial de escurrimiento. Suelos con gran cantidad de arcillas expansivas 2:1 y suelos con camada inferior impermeable.	0 - 1

Condiciones Antecedentes de Humedad del Suelo

Condición I

suelos secos: las lluvias en los últimos 5 días no ultrapasaron 15mm

Condición II

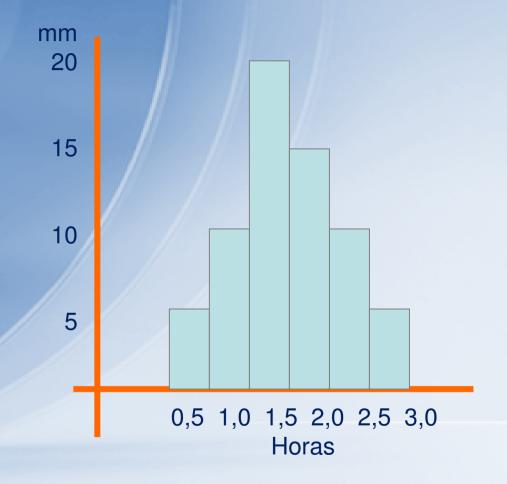
situación promedia en la época de crecidas: las lluvias en los últimos 5 días totalizaron entre 15 y 40mm

Condición III

suelo húmedo (saturado): las lluvias en los últimos 5 días fueron superiores a 40mm y las condiciones meteorológicas fueron desfavorables a altas tasas de evaporación

Condiciones de Humedad del Suelo

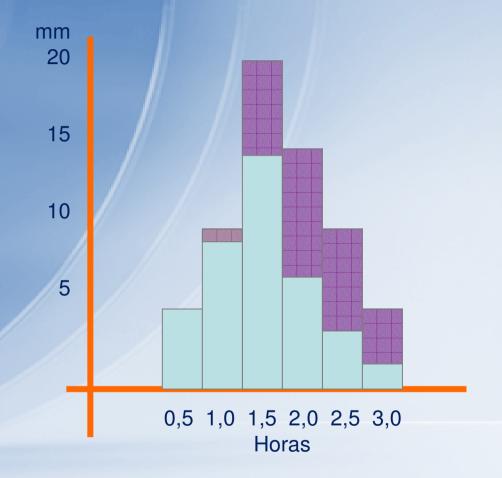
Los valores de CN comúnmente presentados en las tablas se refieren a la condición II. Para convertir el valor de CN para las condiciones I y III existen las


siguientes expresiones:
$$CN(I) = \frac{4.2 \cdot CN(II)}{10 - 0.058 \cdot CN(II)}$$

$$CN(III) = \frac{23 \cdot CN(II)}{10 + 0,13 \cdot CN(II)}$$

Ejemplo: dado o hietograma de diseño ...

Horas	mm
0,5	5
1,0	10
1,5	20
2,0	15
2,5	10
3,0	5


y adoptando el valor de CN (por ejemplo, CN= 65), se debe aplicar la fórmula do SCS de la siguiente manera:

 $Pe = \frac{(P - 0.2 \cdot S)^2}{P + 0.8 \cdot S}$

Horas	Lluvia	Ll. Acum.	Ll. Exc. Acum.	Hietogr. Exc.
0,5	5	5	0,0	0,0
1,0	10	15	0,08	0,08
1,5	20	35	5,80	5,72
2,0	15	50	13,81	8,01
2,5	10	60	20,20	6,39
3,0	5	65	23,63	3,43

- 1. Se acumulan las lluvias del hietograma
- 2. Se aplica la fórmula a las lluvias acumuladas
- 3. Se desagregan para obtener el hietograma excedente

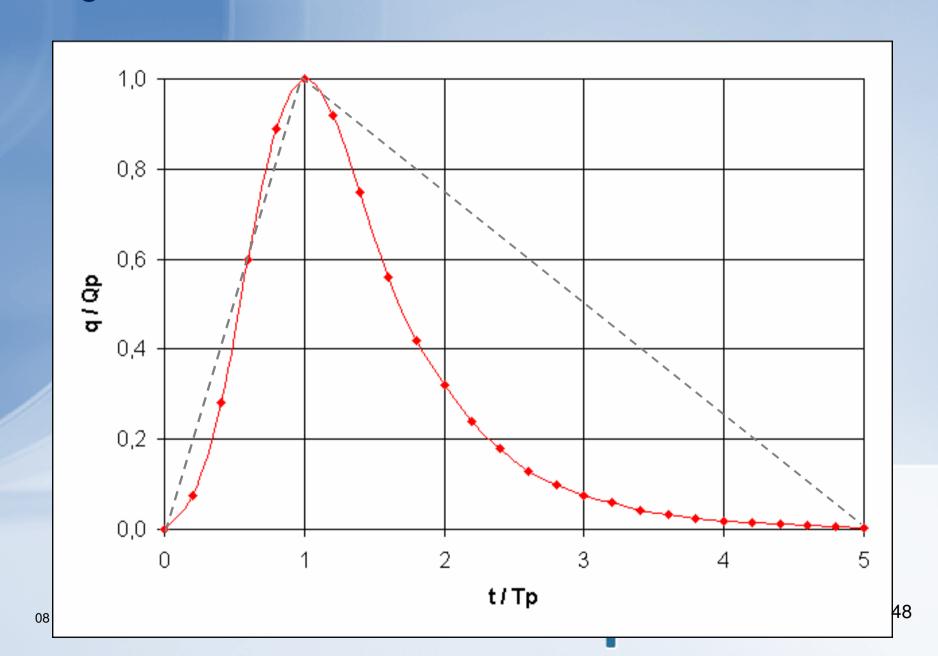
Hietograma excedente:

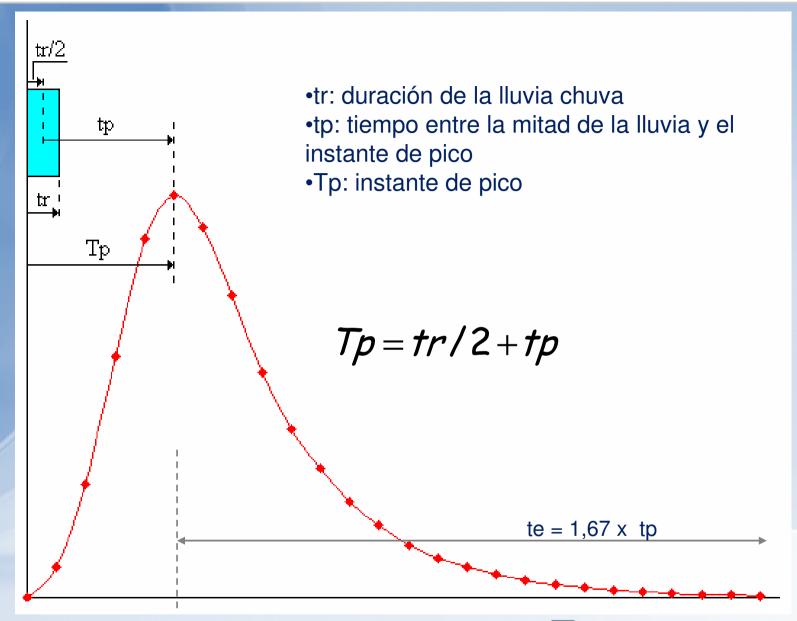
Horas	Ptot	Pexc
0,5	5	0
1,0 1,5	10 20	0,08 5,72
2,0 2,5	15 10	8,01 6,39
3,0	5	3,43

Hidrograma de Escurrimiento Superficial Directo

El Hidrograma do SCS:

 método sintético desarrollado para pequeñas cuencas rurales en los EUA


formas del hidrograma: triangular (simplificado)
 y adimensional


ampliamente utilizado en cuencas urbanas

Hidrograma Unitario Adimensional de SCS

Cálculo del hidrograma unitario adimensional:

- adoptar un valor de tr (duración de la lluvia)
- calcular tp (tp = 0,6 Tc), donde Tc es el tiempo de concentración de la cuenca

• calcular

$$Tp = \frac{tr}{2} + tp$$

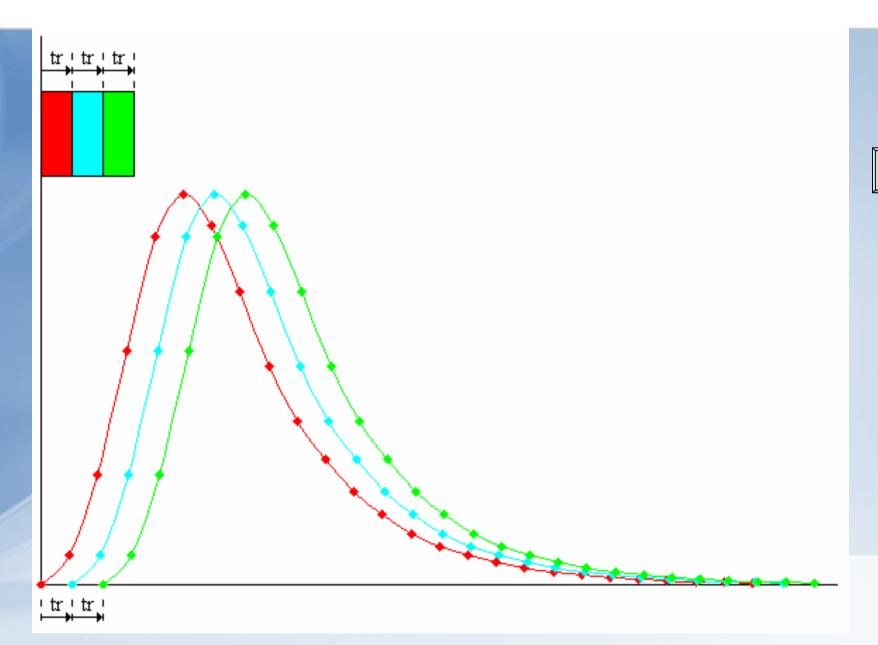
calcular

$$Qp = \frac{0.208 \cdot A(km^2)}{Tp(h)}$$

Atención: Qp (m³/s) es el caudal de pico para una lluvia excedente de 1mm sobre la cuenca.

¿Como transformar el hidrograma unitário adimensional en hidrograma de escurrimiento superficial directo de la cuenca?

· Lluvia con duración tr y altura excedente de 1 mm:


basta multiplicar los valores del eje horizontal del hidrograma unitario por Tp y los valores del eje vertical por Qp.

Lluvia con duración tr y altura excedente de H mm:

basta multiplicar los valores del eje horizontal del hidrograma unitario por Tp y los valores del eje vertical por (Qp x H)

Estimativa de CN:

CN depende de dos (2) planes de información:

- <u>Tipo de suelo</u> → cartografía digital → digitalización → reclasificación
- Cobertura Vegetal y Ocupación del Suelo

Este plan de información se puede obtener de tres (3) formas:

- 1.Fotointerpretación → digitalización → reclasificación
- 2. Clasificación multiespectral dicotómica
- 3. Clasificación multiespectral con mescla

1. Fotointerpretación

Pasos:

- Digitalizar las imágenes (orbitales o suborbitales)
 (caso producto analógico)

 Scanner

 Mesa (formato vectorial directo)
- Registro espacial
- Vectorizar (rutina de segmentación de imágenes de SPRING)
- Generar topología
- Atribuir clases temáticas a cada polígono (única clase)
- Cruzar con el plan temático de suelos para generar CN.

2. Clasificación multiespectral dicotómica

Pasos:

- Registro espacial
- Toma de muestras de diferentes clases de cobertura y uso
- Evaluar las estadísticas de las muestras (evitar sobre posición)
- Elegir una función discriminante adecuad
 Mínima distancia
 Máx. Verosimilitud
 Otras
- Clasificar → cada pixel posee una única clase
- Cruzar con el plan temático de suelos para generar CN.

3. Clasificación multiespectral con mescla

Pasos:

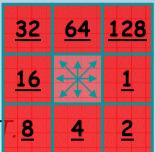
- Registro espacial;
- Toma de muestras de diferentes clases de cobertura y uso (pixel puro);
- Evaluar las estadísticas de las muestras (evitar sobre posición);
- Elegir una función discriminante adecuad
 Mínima distancia;
 Máx. Verosimilitud;
 Otras.
- Clasificador → para cada pixel se estima la probabilidad de ocurrencia de cada clase en el pixel es 1.
- •Para cada tipo de suelo se estima CN ponderando la probabilidad de cada clase de cobertura por pixel.

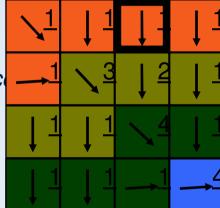
Ponderación de CN:

$$CN_{j} = \sum_{i=1}^{n} \left(CN_{j,i} \cdot P_{j,i} \right)$$

Para:

 $CN_j \rightarrow Grado de permeabilidad de la celda "j";$ $<math>i \rightarrow n$ úmero de clases puras; $CN_{j,i} \rightarrow Grado de permeabilidad de la proporción de la clase "i" en la celda "j";$ $<math>P_{i,i} \rightarrow Proporción de la clase "i" en la celda "j".$


Obs.: Esta análisis debe ser hecha separadamente para cada tipo de suelo.



Propagación:

- •Estimativa de las direcciones de flujo sobre un MD
- •Cálculo del número de celdas que aportan con escurrimiento en cada punto del MD1
- Propagación de los valores de CN acumulados.
- Valor de CN promedio de la cuenca de aporte a cada c
- •Balancete hídrico por celda en diferentes instantes.

