ATIFS: a testing toolset with software fault injection

Eliane Marting
Ana Maria Ambrosid
Maria de Fatima Mattiello-Francisto

Ynstitute of Computing (IC)
State University of Campinas (UNICAMP)
eliane@ic.unicamp.br

Ground Systems Division (DSS)
National Institute for Space Research (INPE)
Av. Dos Astronautas, 1758 - Sao Jose dos Camp2827-010 - SP - Brazil
FAX: +55-12-345-6625,
Ana@dss.inpe.brfatima@dss.inpe.br

ABSTRACT

This paper describes the ATIFS, a testing toolset which supports thatiastiof black-box tests for
reactive systems, especially communication systems. In ATIFSype® of testing are carried out:
conformance testing and software fault injection. These testing types all@vto answer such
guestions about the system under test as: “does the system performsvepegcified?”, as well as
“for how long does the system perform what is specified?” and “how doesylse=m behave in the
presence of faults in its environment?”. This toolset was conceived mplemented aiming at
providing a user with facilities for the activities of test cadrivation, test execution and test result
analysis. The general requirements that guided the ATIFS developmentciigeature and an
overview of the already implemented tools are focused on in this paper.mlie tools were
successfully used in the conformance tests of a real space applicatiemdtry reception software
for real time communication with a balloon experiment developed at INRE tdst process using the
ATIFS toolset in a space application as a case study was an important expertie deal with the
constraints imposed by both the application test requirements and the tool prototypes.

Keywords: test automation, conformance test, fault injection, formal methods.

1. INTRODUCTION

Software testing is an expensive activity. It may consume f&@nto 75 percent of the development
effort of a system [TB99]. Reactive systems, in particulae more difficult to test because they
generally possess distributed and concurrent features. These sy&emd in the real world at air
and train control centers, in telecommunication applications, in spgterss, just to name a few,
need extensive verification and validation to give confidence they will be able to perform the
critical functions. Testing is by far the most common verificatand validation activity. So, reactive
systems must be extensively tested. Due to the increased cotyeitiese systems, the test activity
done manually is a hard task and prone to errors. Consequently the higty denal required for
these kind of critical systems operation is hard to achieve.

Much effort has been put in to building testing tools. One may find coroi@eand academic testing
tools which support different tasks related to the tests. Presgie97] classifies testing tools
according to their functionality in the following categories: dgta acquisition, (ii) static analysis of
the code, (iii) dynamic analysis for code coverage, (iv) sinauathat may replace part of the system
and (v) management for planning, development and control of the tests.

There are few commercial tools to help the user with test gaesieration, especially those tests based
on the system specification. This is because the specificatioerghy is in natural language, being
unable to be processed by a tool. To solve this problem, one has toansiecification using formal
methods. The formal methods allow us to represent the system inasiamotvith a well-defined
syntax and semantics; consequently the specification will be maeigar than those written in
natural language, being thus suitable to be processed by tools.

Formal methods are especially useful for tests. They allow aatiogboth test case generation from
the specification model and the analysis of system outputs produced dasngxecution. Many
different formal notations exist for reactive systems. ATE®pted Finite State Machines, classical
and extended, as the specification model, as these notations are fhequessd to represent the
behavior of reactive systems. ATIFS focuses on using formal methods for confanesting.

Conformance tests aim at answering the question: “does the impletion realize the specified
functionality?” The answer to this question is a first step to gqadlity for a system. However, it
should not be the only question to be answered. For critical systenitioas above cited, it is
necessary to answer questions like: (i) How long does the systeitinue to realize the required
function? (ii) How does the system react whenever faced with ntedaand invalid behavior of the
environment? For answering the last question, ATIFS uses the teclofiéaudt injection. By testing

a system in the presence of faults, either internal (introducedhgludevelopment) or external
(originating in the system’s environment), this technique is aulssdmplement to conformance
testing. An overview of these types of testing is presented in Section 2.

ATIFS comprises seven tools: AnaLEP, VerProp, ConDado, SeDados, riper&ESoFIST, Antrex,
which help the tester respectively in the following combined segivities (i) formal specification
semantic and syntactic analysis, (ii) specification propenmsfication, (iii) test cases derivation
from a formal specification for conformance test purposes, (iva dalection, (v) editing of the
automatically generated test cases and fault selection, ioase of the fault injection option, into a
executable script, (vi) controlled test execution supported by alolisérdl test architecture, (vii) test
results analysis and diagnosis generation after the test éexeciiihe conceptual aspects of these
tools are further described in section 3.

ATIFS is being developed as a cooperative project between the Cemmstitute of Campinas
University (UNICAMP) and the National Institute for Space Baxch (INPE). One of the objectives
of the project is to provide INPE with a set of tools that viitiprove the quality of the space software
systems actually developed in house by INPE. Another objective gdvide an open toolset that
implements various testing techniques.

Section 4 presents the use of ATIFS in the test of a telemetrgption system developed for a
balloon experiment at INPE. Section 5 presents some related worddl\Fisection 6 discusses some
lessons learned and suggests further research directions.

2. TYPES OF TESTING SUPPORTED BY ATIFS

Testing is the process of exercising a system aiming aalgvg the presence of faults. fault (or
bug) is a mistake made by developers as the system develogoeston. For example, a non-
initialized variable in the code is a fault. Aerror is an activation of a fault. When the system
comprising a non-initialized variable is executed, the use of thigable may cause wrong values in
other variables, leading the system to a wrong state. The emaysbe propagated to the system
interfaces, thus constituting a failure. failure is the manifestation of the system’s inability to
execute the service it is supposed to do. A failure is perceigedirang output values, by system
abnormal termination, or by inability to fulfil time and/or space constraints [Birf{E],c

To reveal faults, the system undergoes a combination of inputs duesting. Based on the
observable output a verdict may be given, indicating whether the ese passed or failed. So faults
are revealed whenever a failure occurs. To determine failuceroence, it is necessary to have a

trusted systems specification as a reference. The spemficgupports an oracle, that is the
mechanism used to foresee the outputs that should be produced for the system [Bei95, ch1].

The term testing used in this text comprises the verificatiod @alidation activity of exercising an
implementation with a set of pre-selected inputs and of obsensnguitputs. Test scope will depend
on whether the implementation under test (IUT) corresponds to part of or the full system

Tests are also classified according to the way the inputsl@nged. Commonly used approaches are
implementation- and specification-based. In implementation-based ce-bit testing, test cases are
derived from code analysis. In specification-based or black-box testing:asss are derived from the
system specification (or architecture). Grey-box testingihdsetween both, in which the structure of
the system under test is known, but not the code of each of its elements.

2.1. CONFORMANCE TESTS

Conformance tests aim at determining if an IUT meets itgifigation [Hol91]. Conformance testing
is essentially black-box tests, in which the only observable asgebe IUT is the external input and
output.

In the telecommunication area, an effort has been undertaken to stemedire conformance testing

of protocols of the Open Systems Interconnection (OSl) Reference IMbde standard ISO 9646
“OSI Conformance Testing Methodology and Framework (CTMF)” (1991)neésfa methodology,
establishes frameworkand defines procedures for conformance testing. The purpose is to improve
the capability of both comparing and reproducing the tests resultsrpeetl by different groups. The
standard does not establish the way that the tests should be gdneattter, it defines a framework

for structuring and specifying the tests.

The CTMF also defines conceptual architectures to support test executicordikarto this standard,
the test architectures (also named test methods) should be baské @tation of the Points of
Control and Observation (PCO). The specification of a protocol of tBer€ference model describes
the behavior of an entity in terms of the inputs and the outputs pabyitite upper and lower service
interfaces, respectively named (N)-SA&hd (N-1)-SAP. Ideally, each SAP is a PCO that is directly
used by the testers to communicate with the IUT. But generallyasnaore SAPs are not directly
accessible during testing. The conceptual test architecture is illustrakégure 2.1.

System Under Test
(SUT)

Test System

(N)-SAP—_— Upper Tester

(Um

ition
o’

Lower Tester

“PCOs

Figure 2.1. Conceptual test architecture

The test architecture defines the IUT accessibility model. ¢fhbe described in terms of [TB99]: (i)
the accessible PCOs, (ii) test context, that is, the environmemhich the IUT is embedded and that
is presented during testing; (iii) testers — associated waithePCO, named upper tester (UT) and

! Service Access Point

lower tester (LT) respectively connected to (N)-SAP and (M6AP. Whenever both testers are used,
coordination is required.

In the process of conformance testing we identify three main phéssisgeneration, test execution
and test results evaluation. Since in conformance testing theidlébnsidered as a black-box, test
generation as well as test results evaluation should be based spebiécation. Because the number
of input combinations a complex system may accept is large, aor ieNiite, it is worth having tools
to support these activities, in order to guarantee the required yuatel. In CTMF, only test
execution may be automated, because the specification may be infpodeatribed. An effort has
been undertaken to define a formal framework for conformance tebisgd on formally specified
protocols. In this way, test case generation can be automated, ineftainputs can be derived
algorithmically from a formal specification, which can also besdisor automatic test results
evaluation. There has been effort on standardizing the use of forethloahs in conformance testing
[CFP96]. As an example of this initiative we can mention the workTB99], which presents the
formalization of conformance testing based on Labeled Transitione@igs{LTS) by defining an
equivalence relation between the specification and the implememntalth ATIFS, conformance
testing is based on a formal model of the system in the formEatgnhded) Finite State Machines
((E)FSM).

2.2. FAULT INJECTION

Fault injection consists of the deliberate insertion of faultsroors into a system aiming at observing
its behavior. This technique is very useful to validate the imgletation of error recovery and
exception mechanisms, as well as to determine the system belmatfo presence of environment
faults.

There are several approaches for fault injection [HTI97]. Our wadkiresses fault injection by
software, which causes changes in the state of the system wstientider the control of software. In
this way both hardware and software failure modes might be enculd@tee mechanism consists of
interrupting the IUT execution to run the fault injector code. Theelatbin be implemented in various
forms: as a routine started by a high priority interruption, a routine stdnyea trace mechanism, or as
an extra code inserted into the IUT or in its context (operatingesysunderlying communication

layer, for example).

The fault injector implemented in ATIFS aims to mimic communicatianti&which represent typical
faults of distributed systems, like message loss, duplicationuption and delay. Communication
fault injectors are generally inserted between the IUT andutigerlying service [DIM96], [EL92],
[RS93], [SW9I7]. The fault injection mechanism implemented in the FS©Rbol is described in
section 3.

3. ATIFS DESCRIPTION

3.1. REQUIREMENTS

The ATIFS project had its initial conception in the beginning of theeties. Since the beginning it
was thought of as a set of integrated tools having a common stamapthical interface and a
common data base to handle the data produced in each phase of the tess piidee foundational
requirements that oriented the ATIFS were: (i) the use of mé&bispecification, FSM or EFSM, from
which to derive the test cases and analyze the test re§ilisie support to several test activities like
generation, implementation, execution, and analysis; (iii) portab{ldpix/Linux and Windows
operating systems); (iv) user interface homogeneity; (v)resitality, allowing new tools to be easily
aggregated; (vi) be as much as possible independent of the implementation under test.

3.2. ARCHITECTURE

The ATIFS architecture, shown in Figure 3.1, comprises the followawgst AnaLEP (analyzer of a
specification written in LEP(from Protocol Specification Language, in Portuge)es VerProp (FSM
properties verifier); SeDados (Data Selector); ConDado (Zaé Control test case generator),
GerScript (Script Generator), FSoFist (Fault Injector), AnTrEx (Tracalyser).

User Interface Framework

properties

VerProp Abstract

|—Test Se

Specin

Tables
—LERyf AnaLEP

ConDado

\ 4

Parameter
| Abstract
Test Seq

SeDados

A 4

. Exec. Test
GerScript ™ Seq. - ch

FSofist)
| Execution

_emd) . Trace 1

Tables verdict &
Antrex | statistics y,

Object Management Level

Data
H‘”

Figure 3.1. ATIFS architecture

In order to completely integrate the tools, an infrastructure designed comprising: (i) a user
interface framework, which facilitates and standardizes therfite of all tools [Gui96]; (ii) a data

base shell to manage persistent objects. The four main toolsdglm@plemented and validated, are
described below

3.3. ConDado

ConDado is a tool for automatic test case generation [Sab99]. Thetm@unDado is a specification
in the form of an FSM or EFSM. This specification can be described textualhguke LEP notation.
Currently, the tool has been enhanced with interface which allowsphgal representation of the
specification. The test case generation is static (testsganerated and may be checked before
execution) instead of dynamic (or on-the-fly, where the tests eanemted during the test execution).
The main feature of this tool is that it combines test genenafior the control aspect of a
specification (FSM model) and also for the data part (EFSM moddlg output is an abstract test
sequence (named according to ISO 9646 standard [ISO91]) in an IUT-indeperadation. In the

following subsections we briefly describe the main features of Caodfarther details can be found
in [MSA99, Sab99].

3.3.1. Test generation: control aspect

In order to generate test cases for covering the control agiiebe specification and for detecting
output faults, ConDado implements a variation of the TT (transition)towthod. The algorithm
searches the FSM, supposed to be strongly connected and determiaistayerse circuits starting
and ending at the initial state. Each circuit represents a scesfause of the system and is exercised

by a test case. Although the TT method is not able to detect tramgaults (e. g. if the IUT goes to a
wrong state) the diagnostic algorithm implemented in Antrex addresses thid.aspe

3.3.2. Test generation: data aspect

The data aspects considered by ConDado are relative to the famdaparameter values of input
interactions. These aspects are described in LEP using a syntax that is based.th ASN

Two testing techniques are used to generate test data: systargtand equivalence partition testing.
Syntax testing [Bei90, ch. 5] is used here to produce valid format&ndt interactions. The
equivalence partition technique is used to produce valid data for inpaimeders. Although both
testing techniques require generation of invalid inputs, this is not implemémtagid increasing test
sequence size. Fault injection may be used to cover these aspects.

For EFSM specifications, data aspects comprise also varigdohels predicates. The latter are
associated with transitions and are conditions that must be edtisfi the transition to be fired when
the input interaction occurs. Predicates are expressed in termsvdribbles and parameters of input
interactions. So, to satisfy a given test purpose (in other teloresgercise a given transition circuit),
data values should be selected so that all transition predicates in the ciecsitesfied.

ConDado does not address this issue, as data values are genethted taking the predicates into
account. For the moment the user has two options: (i) to unfold the ERS#gining the
corresponding FSM without predicates (reference [CS87] has a gooehpséen on this subject) (ii)
to change data values manually. The SeDados was planned to deal wisistigf&Jbe01].

An example of an input specification in LEP as well as the outputeggted by Condado is
presented in 4.2.

3.4. GerScript

The GerScript tool transforms a test suite generated by ConDadwchere an Abstract Test Suite
(in analogy to ISO 9646 standard [ISO91]), in an executable format [JeTiB8]output of this tool is

a test script in the Tool Command language (TCLhis notation was chosen because at the time the
tools were developed, it was a popular interpreted language, used @ faoihinjection tools (e.qg,
[DIM96]). Besides, TCL syntax is quite similar to C, which makkesasier for the user to create his
own test cases without the burden of learning a new language. Moreiowerpreters for this
language are freely available and can be easily incorporateddnor C++ programs. The script,
consisting of the Executable Test Suite, may be organized in groups [ISO91].

For fault injection tests it is also possible for the user tardethe faults to be injected. A fault is
characterized by a set of attributes: (i) fault model, which ba one of the following: message
omission, corruption, duplication or delay; (ii) a mask, used for message comuptihich defines the
value to be used to alter message contents, (iii) repetition pattérahindicates whether a fault is to
be transient (inserted only once), intermittent (inserted peridg)cal permanent (inserted in all
messages); (iv) fault location, that indicates which part of thesage is to be corrupted; and (v) fault
start, that indicates how many messages should be transferreddretiae tester and the IUT before
fault injection starts.

3.5. FSoFIST

FSoFIST stands for Ferry-clip with Software Fault Injection Suppaol [Ara00]. This tool aims at
supporting the test execution. It presents a user interface allowingdiee te control and monitor the
tests step by step. It has facilities to start, stop and conarnast session any time. It also provides a
framework designed according to the ferry clip architecture #ilbiws conformance testing of

2 Abstract Syntax Notation One -

different protocol implementations. This architecture has been extdretedto support the injection
of faults with minimum intrusion in to the system under test.

The ferry-clip architecture [ZR86], [ZLD+88], [CLP+89], proposed foofarcol testing, presents the
following advantages: (i) it is intended to implement the différetandard test architectures, (ii) it
supports the execution of various types of tests beyond conformance [CV[DY2{ presents a high
degree of portability and modularity, and (iv) it presents a low degree of intrusid e ilUT .

Figure 3.3 illustrates the distributed architecture of the FSoFIBTe Active Ferry (AF) and the
Passive Ferry (PF) are the main elements of the ferhiitacture. They are responsible for the test
data transfer according to a simplified ferry protocol. Additionalhey adapt the data into the format
understandable to the IUT, so the Test Sequence Controller is not modified for each new IUT

o

4

System under Test (SUT) Test System Test
Manager

/ (T™M)

test

/' trace|

~—

N
= Test \
Sequence test

Controller script
PCOs~” (TSC) ~—

(N)-SAP —

(N-1)-SAP

Figure 3.3. FSoFIST architecture

As shown in figure 3.3, the test data is transported from the TgsteB (responsible for test
coordination) to the System Under Test by feery transfer mediumwhich is an IUT-independent
communication channel.

The test manager (TM) starts and stops a test session aitaltyabr under a user command. It
provides a user interface allowing the user to follow the exectastlsteps and to enter information
before the test execution. It activates and deactivates the Test Systeroramnts.

The Test Sequence Controller (TSC) applies a test sequence HdTthesing the ferry clip protocol
according to the available PCOs

The Fault Injection Controller (FIC) controls fault injection iegt according to the script. It sends
information about the faults to be injected to the FIM (Fault In@mttModule) and stores data
collected by the latter. The FIM resides in the test contexhtércepts the messages received by the
IUT, and inserts the faults determined by the FIC.

FSoFIST was developed under the Solaris 2.5 operating system, wivegis first used. It was later
ported to Linux. Its PF component ran initially in Solaris but wasisfarred to MS Windows for the
case study presented in section 4.. The AF is written in C++ an®khim Perl. The communication
between them uses the socket library, which facilitates thepooent extension to the case of testing
several IUTs.

An example of input to FSoFIST as well as the output log can be seen in 4.2.

3.6. AnTrEx

This tool implements an oracle, a mechanism that analyses whetheot the observed outputs
conform to what is specified. Analysis is performed on an executiacetthat is comprised of the
observed interactions (viz. system inputs and outputs) [Ste97].

The specification model (used for test case generation) isuesd for trace analysis. As a result, a
verdict of pass or fail is emitted for each test case. osé with a verdict of fail, a diagnostic is
provided with the probable cause of the failure.

4. CASE STUDIES

This section presents some examples using the ATIFS tools. Thesapks, as well as the
experiments performed in a case study described in 4.2 were aimedigdting the main tools of
ATIFS.

4.1. Initial experiments

To validate the test approach implemented by Condado we used thecgewif of the transfer layer
of the CCSD$ protocol stack, used in the Telecommand Station of the SACI-1 prffzn07]. The
protocol was specified as an FSM possessing 6 states, 46 inputs anch@8i&idns. The following
table shows the CPU times as well as the number of tess gggeerated when varying the number of
transitions of the original specification. Nine different machime=e generated, designated M1 to
M9, where M9 is the original FSM. Table 4.1 shows some results olataiRarther results are
presented in [MSA99].

Table 4.1. Some test generation results using ConDado.

Model | # Transitions Constraints CPU time (sec) # Testcases
M1 220 — 1.74 324
M2 221 — 2.21 406
M2 221 Cover only one transitign 1.59 82
M3 222 — 4.85 689
M3 222 Cover only one transitign 4.06 283

The experiment was performed on a Sun SPARC station under Unix. Thksras Table 4.1 show
that the use of constraints can considerably reduce the number afatest, but the same does not
hold for the CPU time. This is because the test case generagonithm is implemented in Prolog,
which first generates a test case and then checks whetkatisfies the constraint; if not, the test
case is discarded. We envisage the implementation using a+C/@st only to improve the
performance of the tool but also to allow other coverage critthiaé allow for a generation of shorter
test sequences than the one currently implemented.

4.2 . Telemetry Reception System

The Telemetry Reception Software (TMSTATION) of the MASO®lescope implements a ground
entity of the ground-board communication protocol, which receives inti@al the data from X-ray
sky imaging got from the MASCO telescope (a Brazilian sppogect) [VBF+01]. The data is
acquired during approximately 30 minutes during the telescope’s flighbaard a balloon. The
experiment was developed by the Astrophysics Division at the Ndtiosttute of Space Research
(INPE), and will be launched in 2003. The imaging data acquired by a fseddetector is organised
into frames, stored in files on board, and transmitted in real tiona ground station, where it is
received by the TMSTATION software [Mat00].

% Consultative Committee for Space Data Systems.

The main function of TMSTATION is to separate the frames, sedqakntreceived through a serial
channel (RS-422 interface), in distinct files, in exactly the savag they are stored on board. The
separation is based on the identification of a pattern that comdiststring of at least 5 hexadecimal
words @ab5H) consecutively, which represents the end-of-frame pattern. The TRWEON
behaviour was formally specified in a FSM. It was implementedCi under the LabWindow/ CVI
environment for Windows [LWC96]. We present the partial results obtained up to now.

4.2.1 Conformance testing

Test case generation for conformance testing of the TMSTATH#0ftware was based on the FSM
model presented in Figure 4.1. To simplify matters, we consideredhbatnd of frame pattern is a
sequence of exactly five times the hexadecimal staa§5 The specification considers the situations
of missing data during the balloon flight transmission to ground. Becatiskis missing data the
TMSTATION software may separate files, on ground, in a differeay from the data stored on
board. In this way, frames may be truncated (missing words in thefigddaor extended (missing the
end-of-frame pattern, causing two frames to be considered as ortee model presented in figure
4.1:
e the input interactionNaa55 represents a particular string composed of 50 characters not
comprising anyaa55Hword;
e the states P1, P2, P3 and P4 recognize the end-of-frame pattern;
e we considered only one transition back to the RAW DATA state fromis3ead of one from
each of P1, P2 and P4. This transition is enough to represent the hrredaa55H sequence
that ends the frame.

aa55

/ reject
data Naa55
/ record data

aab5
/ record data il / record data

/ record data

aab5

i i record data

aab5
/ record data

aa55
/ record data

/ record dat
/ close file, open new
record data End of Frame

Figure 4.1: TMSTATION behaviour in FSM

Figure 4.2(a) presents the specification in LEP, whereas in fmarhés a list of the test cases
generated. Both are partially shown, for sake of brevity.

STATES: -- 1. test cases - invalid data

#inic; -- the “#” identifies the initial state senddata(U,aa55) recdata(U,RejectData)

raw_data;

pl; -- 2. test case — normal or truncated data fielthvaine extra
p2; standard

senddata(U,Naa55) recdata(U,RecordData)
p4; -- waits last aa55h of the end-of-frame patter| senddata(U,aa55) recdata(U,RecordData)
end_of_frame; senddata(U,aa55) recdata(U,RecordData)

INPUTS:
Na55;
aabb;

OUTPUTS:
Reject_data;
Record_data;
Close_file;
OpenNewFile

-- Transitions are described according to the

-- following format:

-- *<transition id> “>"<current state>

-- “?"<input event> “I"<output> “<"<next state>

TRANSITIONS:

*0 >inic ?Naab5 IRecord_data < raw_data ;

*t1 >raw_data ?Naa55 !Record_data < raw_data;
*2 > raw_data ?aa55 ! Record_data <p1;

*t9 >end_of_frame ?aa55 !Record_data <inic;
*10 >inic ?aa55 !Reject_data <inic;

senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,Naa55) recdata(U,CloseFile OpenNewFile
RecordData)

-- 3. test case- normal or truncated frame
senddata(U,Naa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,Naa55) recdata(U,CloseFile OpenNewFile
RecordData)

-- 4 testcase - frame with end-of-frame occurreimte the data
field and one extra (truncatecaime)

senddata(U,Naa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,Naa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,aa55) recdata(U,RecordData)
senddata(U,Naa55) recdata(U,CloseFile OpenNewFile

RecordData)

Figure 4.2: (a) Specification of TMSTATION softwaie LEP. (b) TMSTATION test cases generated by

With the FSM simplification described above, the test cases aitoatly generated by ConDado
were quite representative. We divided the test cases accotalitigeir coverage into the following

situations:

*

containaab59H.

ConDado

normal frame reception (no data missing): test cases 2 and 3, respectively. In these sest ite
parameter value for the inpiNaa55is a data field string that is 50 words long and does not

truncated frame reception (some words missing in the data field): test cases 2 and &hage,

but the parameter value for the ingu&a55is a data field string that is 25 words long.

extended frame reception(some words missing in the end-of-frame pattern): test cada 4,
which the parameter value for the inpNga55is any data field string composed of at least one

non-aa55 word. We have used 10 words in the test execution.

4.2.2 Test Configuration

FSoFIST was configured for the tests according to figure 4.3. Only the PF componemingéred in
order to integrate with the new IUT. This first module version was orukj and here it was ported to
Windows. The physical serial channel connects the two preegsPF and IUT, both residing in the same
machine, in Windows environment. The Lab-CVI libyawvas used for the communication through the serial

channel, acting then as the test context

Test System —
LINUX Environment

System Under Test (SUT) —
Wind ows Environment

THSTATION
Test Script

v

(17-1)-34P

Figure 4.3. FSoFIST configuration for TMSTATION dpgation
4.2.3 Fault Injection

We also performed fault injection experiments. The configuration usasl quite similar to that
presented in figure 4.3. In this architecture we introduced the FIM neoshside the PF. Faults are
injected to emulate ground-board link failures. For that reason, s@naed that messages transferred
to the IUT through the serial channel are delivered in sequenchoutitmodification. So, the FIM
was not introduced inside the test context, as it should be; instead, it uses this contéxtféee with
the IUT. This configuration was useful given that our main inteveas$ solely to validate FSoFIST
module’s behavior.

Given that wrong frames are now generated through fault injection, we did not useripieproduced
for conformance testing. Instead, test inputs were obtained fromL&EWVEETRY .dat file, containing
only a sequence of valid frames. This file contains the output datergted by the onboard system.
For fault injection tests, the scripts were generated according to the fault spetgfied. Faults were
selected deterministically to meet the frame violations presented in 4.2.1.

Figure 4.4 shows an example of FSoOFIST window during test execution. The pppeof this
window shows the script used to inject faults. In this script, tis¢ tlhree words of the end-of-frame
pattern are changed to 9A05, intermittently on th& 2° and 4" frames of a sequence composed of
five frames. The lower part of Figure 4.4 shows partially the log generated dinerigsts.

v[FSofisi~ romefinsyaiit fusao Sl [=[5]%
Arquivo Editar Testes Ajuda

hile { | [eof $ H .

nibas e 4—| Readina the TELEMETRY.DAT FILE ($:

set huffer [read §f 2]

if{ $fault == 1 3{ \
#COMUPCAD o pacote ({337<146)x2) -2) (IxAASS) com a mascara xJA05

sendFemd 1 C 273602 9405

#COMURGAD no pacote ([(337x146%2) -1) (IxAATT) cam a mastara IxBAND
sendFomd 1 C 273603 9405

#comipgdo no pacote ((337x146)x2) (1xAASS) com a mascara 0x3ADS
sendFemd 1 C 273604 3405

#COMIpGH te (((3374146m3) -2) (IxAATS) 03405 i -
L Fault descriptors:
#comipcdn no pacote ({{337x146)x3) -1) (IxAASS) com a mascara 0x3A405 > COI‘I‘UptIng WOI’dS aa55h

sendFomd 1.C 410405 3805

#comipgdn no pacote ((937x<146)x3) (1xAASS) com a mascara 0x3A0S H
sendFond 1 C 410406 3405 using a mask (9a05

#OOMUPGAD N pacote ([(337x148%4) -2) (IAATT) cam a mastara Ix3ANS —
sendFomed 1 C 547206 9405

#comipgdo no pacote ({{337<146)4) -1) (IxAASS) com a mascara x3A09
sendFemd 1 C 547207 3405

#COMIBCHD no pacate ((937x146)) (04RASS) com & mascara DXIADS /
sendFemd 1 C 547208 9405

| I

#connection stablished: PF#1 (iramp.lab ic.unicamp.br 1977}
EB 11 C ("273602 , 9A05")
i1 C ("273603 , 9405")
"273604 , 34057

410404 , 305"
410405 , 303"

(. . .
!) Sending fault descriptors Frame transmitte
e, 5y to the FIM moduls /
()

)

547207 , SADS"
11 C ("547208 , BADS"
30 222 >AB 22 »AB »22 4B >20 AR >27 »AB »22 »AB 22 »AB 22 »AB >0 »AB >12 »AB >22 »AB >27 »AB 222 »AB 22 »AB >22 >AB >2Z >AB »22 »AB =12 »AB 22 »AB 22 >AB »22
>AB »22 »AB >22 »AB >22 »AB =27 >AB »22 »AB 22 >AB »22 >AB »22 »AB 222 »AB 22 >AB >22 »AB »22 »AB »17 »AB >22 >AB 22 >AB 22 »AB =22 >AB »22 »AB 222 >AB »22 »AB »22
+AB +22 2AB 322 +AB »22 +AB 227 #AB 70 2AB 322 +AB +22 +AB =22 +AB »27 :AB 22 0B +27 +AB +22 +AB =12 =AB 222 4B 307 +AB +72 »0B =22 +AB »27 »AB 27 AB +72 »AB 22
=0 22 4B 222 +AB 222 2AB +27 +0B +20 =48 220 »AB 228 AR 07 0B 220 +AB 322 +AB 227 »AB 522 AR 02 8B 337 3B 527 3B »22 248 522 »AB 22 2AB 207 +0B =20 »4B »20
A8 =22 =AB >22 »AB 22 »AB 22 »AB =22 »AB »22 4B >22 >AB »21 »AB 22 »AB »22 »AB »22 AR =22 =AB =12 »AD 22 »AB 27 »AB =02 =AB =22 AB >22 »AB >2Z »AB »22 »AB »22
=48 22 A8 22 »AB »22 »AB =27 »AB #I2 =AB »22 =48 22 »AB =21 »AB =20 »AB 522 =B 27 A8 502 =AB w02 »AB »20 »AB 527 »AB »22 =48 22 »AB »22 »AB 527 »AB =22 =AB »22
=48 »22 »AB >22 »AB 22 >AB 27 »AB »22 »AB >22 4B >0 »AB »21 »AB 222 »AB 22 »AB »27 >AB »22 »AB »12 »AB 22 »AB 22 »AB »17 »AB »22 »AB >0 »AB »22 >AB »22 »AB »22
>AB 22 »AB >22 »AB »22 »AB »22 »AB »22 »AB »22 >AB »27 >AB »22 »AB »22 »AB 222 >AB >22 »AB »22 »AB »77 »AB >22 >AB 22 >AB 22 »AB »22 »AB >22 »AB 327 >AB »22 »AB »22
+AB +22 8B 328 +AB »22 +AB =27 =AB 72 2B 322 A8 +22 +AB =22 +AB »27 AB 322 0B +27 +AB +22 +AB =12 =AB 222 A8 307 +AB +20 »AB :22 +AB »27 +AB 327 AB +72 0B 22
=08 =22 4B 222 +AB 222 3AB +07 +0B +22 =AB 220 »AB 522 AR 27 »AB 220 +AB 320 +AB 227 »AB 522 A8 02 4B 237 +AB 527 3B »27 248 522 »AB 22 2AB 207 +AB =20 =48 »22
A8 =22 =AB =22 »AB 22 »AB »2Z »AB =20 =AB »22 4B >22 »AB »21 »AD »22 »AB 22 »AB »27 >AB »22 =AB =12 »AB 22 »AB 22 »AB »I2 »AB =22 =AB >27 »AB >2Z »AB »22 »AB »22
=48 #22 AR 22 »AB »22 »AB =27 »AB #22 =AB 522 4B 22 »AB =21 »AB =20 »AB »22 »AB 21 A8 502 #AB =02 »AB »20 »AB 527 +AB 522 =48 22 »AB »22 »AB >0 »AB =22 =48 522
=48 »22 2AB >22 »AB 22 >AB »27 »AB »22 »AB >22 4B >22 »AB »21 »AB »22 »AB 22 »AB >27 A8 >22 8B »12 »AB 22 »AB 222 »AB »17 »AB »22 »AB >0 »AB »22 >AB »22 »AB »22
>AB 22 »AB >22 »AB >22 »AB »27 »AB »22 »AB 22 >AB »22 >AB »22 »AB 222 »AB 22 >AB >22 »AB »22 »AB »27 »AB >22 >AB 22 >AB 22 »AB »22 »AB »22 »AB 222 >AB »22 »AB »22
zAB +22 2B 322 +AB >22 +AB 227 #AB 220 2AB 322 2B 222 +AB #22 +AB 222 AB 20 AR 322 +AB +22 +AB 277 #AB 222 >AB 302 +AB +22 »AB #22 »AB 222 +AB 227 AB 22 4B 22
208 #22 +AB 22 +AB 302 >BB »27 »AB =72 =B 222 +AB 322 3AB »27 +AB 372 »AB 327 »AB 227 2AB =02 =B 22 +AB 322 >AB 27 +AB 272 +AB »27 »AB 222 2AB 227 2AB +22 +AB 222 | 4

‘TESIES cancelados!

Figure 4.4. FSoFIST graphical interface showingaltfinjection script and corresponding log.

We are currently using the tools to validate another version oTM8TATION software that checks
the status of the frames (truncated, extended, normal) based on thetsmittheir sub-framésThis
specification has &tates, 15 inputs and a total of 22 transitions. The number of test casbe
complete test suite derived by Condado was 4,742.

We are also testing the Conference Protocol, presented in [TB99F3W model was generated
based on the specificationThis protocol provides a multicast service, like a “chat-box” users
participating in a conference. For a conference with three par{Ae®® and C) we obtained a partial
model with 5 states and 17 transitions, representing the differeys tegoin and leave a conference.
A total of 10,429 test cases were derived for this specification.

Of course, constraints offered by Condado are being used in both casbtato practically useful
test sequences.

5. RELATED WORKS

Numerous approaches have been proposed for the validation of reacstemsy Our work is
primarily related with studies in the areas of protocol conformaasgeng and fault injection. Section
2 presented the main aspects concerning these two fields. Here we discuss soous pverk.

A closely related area is conformance testing based on forratiads. As discussed in [Hol91] the
approach used in this study for test case generation is aimdwwairg the behavioral equivalence

* Each frame is composed of various sub-frames, efethich is 146 words long.
® Obtained on http://fmt.cs.utwente.nl/ConfCase/@lspecifications/confprotl.efsm

between an specification, described as finite, strongly connectedirieistic automata, and an IUT
that is supposed to implement it. In [UY91], [BDA+97] there are exasmf previous work in this
area. A work in this field that is very close to ours is the @mesented in [TPB96], which describes
the TAG tool that automatically generates test cases fr@#l Epecifications. From this work we
borrowed the FSM textual description. Another point in common with this ®ttat Condado also
provides complete or selective test derivation. When completelégvation is used, a complete test
sequence is generated which covers each path that begins and grelsatal state. In selective test
derivation, one must specify one or more transitions in the FSM, and patlys including those
transitions are covered by the test sequence. However, Condado diiiersTAG in three main
points: (i) Condado does not implement state identification approachéssfoderivation. (Although,
these approaches allow for the identification of invalid statesy tieeit in a very high cost which
makes them hard to use in practice); (ii) test cases in Bf&specified in SDL, whereas in Condado,
TCL is used for that purpose; (iii) the test cases produced byT#h& tool do not include test
parameters, whereas in Condado they do.

An approach that is parallel to ours is the one based in Labeled ificemSystems (LTS). A
conformance testing framework, based on the concept of implementataiion. An implementation
relation is a relation between the traces of the specificatimmhthe implementation [Tre99]. Different
testing tools have been built based on this conformance frameworkx&mme is TORX [TB99].
The tool supports the approach called on-the-fly testing, which combines test dsrigat execution
in an integrated manner. Instead of deriving a complete set btéses (comprised of test events,
each test event representing an IUT interaction), the testatem process only derives the next test
event which is immediately executed. This approach is useful to avaith@anageably large number
of test cases which may be derived when using batch approacheshd-onament, ATIFS only
implements the batch approach. To manage the large number of $est ttee user can use selective
test derivation or reduce the specification.

From the protocol conformance testing field we also borrowed the-tip approach to build our
test execution support tool, the FSoFIST. The ferry-clip approach mtesduced in 1985 [ZR86]. In
this approach both, the test channel and the ferry channel pass throulghTthEne PF replaces the
UT in the System Under Test, and an enhanced UT resides in the same machine as tha lk@sult,
the amount of test code in the SUT is reduced and synchronization bethed® T and LT is easier.
Many refinements has been applied to this architecture since th@alD+88] a reduction in the PF
is proposed, by removing the interface region. The interface regionerts data to/from the IUT,
masking IUT dependent features from the testers. Part of fieesares were moved to a new module,
called Service Interface Adapter. This module was introduced iiT &s¢ System to convert data from
to/from the upper IUT interface. The other part constituted the entetmyder in the Test System,
used to convert data to/from the IUT lower interface. Also, thheyffehannel no longer passes through
the IUT; it uses the underlying communication layer instead. TheyFElip based Test System
(FTCS) was proposed in [CLP+89], where a Ferry Control Protocol gesva standardized interface
on top of an existing protocol, which actually transfers the test ¢da ferry transfer medium
protocol). In this architecture, both interfaces of the IUT are adied and observed by the PF. We
borrowed this idea to build oderry injector. Besides the improvement on the control and observation
of the IUT interfaces, this architecture also provides an indeperaeninunication channel for ferry
connection. This allows the Ferry Transfer Medium Protocol to bsiraple as possible, in order to
reduce the complexity of the PF. In addition, this guarantees thé&ahilay of a connection between
the Test System and the System Under Test in case of cragdhiels can occur as a consequence of
fault injection.

The studies presented so far are aimed at conformance and intdmtiper&sting, but do not
consider fault injection.

Fault injection on distributed systems is a very active aliedhe past, most common fault injection
approaches were made by hardware or through fault simulation. Theseaapps have been used

even for software validation. For example, in [AAC+90] the validatiof an atomic multicast
protocol using hardware implemented fault injection is presented. Mecently, software-
implemented fault injection (SWIFI) is being used for that purpos@/IF3 approaches can be
classified astatic, when faults are introduced at source codedymamic when faults are introduced
during runtime [HTI97]. The tools presented here cover both approachegntime fault injection,
an additional software is necessary to inject faults into tistesy as it runs; this extra software is the
fault injector. One main concern when building software fault injecisrintrusiveness. To reduce it
to a minimum, the architecture of most of the tools is divided io parts: a SUT-independent part,
responsible for management functions and na interface with the ubet \generally resides in a
control node, other than the one hosting the SUT [SVS+88], [HRS93], [DIMBB]CD3]. The ferry
architecture is suitable for that purpose, because it definedrébdied test architecture in which the
IUT-independent components reside in another host for sake of reducedvieiess. This was one
of the reasons why this architecture was chosen for FSoFIST.

With respect to the SUT-dependent part, various mechanisms candheSasee tools introduce the
fault injection and monitoring features (or at least, a calliboary functions responsible for those
features) inside the source code. Another common approach when injeotimgunication faults
consists of creating an extra layer between the IUT and the wmigrtommunication service. This
extra layer, also called fault-injection layer, may be introduaekiernel level or between the IUT and
the layer immediately below it. FIAT [SVS+88] implements botppeoaches. EFA [EL92] and
VirtualWire [DNCO03] introduce an extra layer on top of a link laye the protocol stack at kernel
level. Orchestra [DIJM96], on the other hand, introduces an extra Ig@gyebe and fault injection
layer) immediately below the IUT layer. This allows for tieg from lower to higher levels. Fault
injection features are introduced into a library that must be tinkéh the IUT before execution.
Emulating a network layer is also a mechanism that can be fesefhult injection. A tool called
Mendosus [LMN+03] emulates a LAN to provide the user with a virtnatwork with tunable
performance and fault injection characteristics. Due to the ustheofferry architecture, FSoFIST
allows various of these mechanisms to be implemented; the PF tend-IM modules can be
configured according to the user needs. A similar work can be foun8\W97]. There, the authors
present a framework for the development of fault injection toolsther validation of distributed
systems. This work differs from ours in that they are only conedrwith fault injection support. Test
case generation and results analysis are not considered.

Another aspect in SWIFI is related to input generation, which inclutdesvorkload as well as the
faults to be injected. The workload is used to activate the SUT. In casenahanication systems, the
workload constitutes the messages exchanged with the IUT during@ariment run. Except for
Doctor [RS93], which can generate synthetic workloads based on a specificatiotpacbgeneration
is usually left to the user. In ATIFS, this task can be perfatraatomatically by Condado. Users can
create their own scripts manually, either using GerScript orR8eFIST tools. In regards to the
faults, they can be described in a tool-specific notation, as for example, in FIAT, dangaage such
as TCL (e.g., Orchestra [DIJM96]) or C (e.g., EFA [EL92]), or als@ special-purpose language, as
in VirtualWire [DNCO3]. In ATIFS, the test cases (used as viogkl) as well as the faults are all
described in TCL. Most tools generate faults randomly, as the erpats are aimed at evaluating
dependability measures (e.g., the time taken between the astivatan error and its detection by an
error recovery mechanism). In ATIFS, faults can be generatezfmetistically, as in Orchestra and
EFA, for example, in this way increasing the fault revealing potential withefaests.

6. CONCLUSIONS AND FUTURE WORK

ATIFS is a toolset aimed at providing support for the testingezctive systems. The set of tools
developed up to now helps the user in various test activities, natestycase generation, test
execution and results analysis. Test case generation is basedpagtification in the form of Finite

State Machines. Various testing techniques were combined to gertesét, covering the control part

(valid sequence of interactions) as well as the data part éband parameter values of the input
interactions) of the specification. ATIFS supports two types dirtigsfor the moment: conformance
testing and fault injection testing. ConDado generates test tasesl on the formal specification of
the system under test in order to satisfy the conformance ofntiplementation with respect to the
corresponding specification. In addition, FSoFIST is able to injectganimicking communication
problems caused by the environment.

We are now using the tools with various case studies in order tmata not only their
implementation but also the techniques implemented. In this paper we s\l results relative to
the tests of a space application. Further testing is under wapariincular fault injection testing. The
AnTrEx tool will also be validated using these case studies, strites not been used in real day-by-
day situations yet.

Besides continuing the testing activities with the MASCO agqian and the Conference Protocol,
we also plan to implement the SeDados tool that will complement @doPallowing test case
generation from an EFSM.

The toolset promises to support a test methodology that is the aifartbfer research. A well-
established methodology is invaluable to put research into practieemiiin difficulties found in the
case study were to identify the simplifications on the originf@M~specification in order to avoid test
case explosion, mitigating the non-representative ones.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support from theziBan funding agencies
National Research and Development Council (CNPq) and the Rese@droAndation of S.Paulo
State (FAPESP) for their partial support to this project. Thénenst also would like to acknowledge
the referees whose insightful remarks considerably helped to improve the auidhig paper.

REFERENCES

[AAC+90] Arlat, J., Aguera, M., Crouzet, Y., Fabre, J.-C., Martins, E., BlbwD. Experimental
Evaluation of the Fault Tolerance of an Atomic Multicast Systd#ekE Trans. Reliability, 39 (4),
(October/1990), 455-467

[Ara00]Aradjo, M. R. R. Fsofist — a tool for fault-tolerant protocolssting. MSc dissertation,
Computing Institute — Campinas University, Brazil, Oct. 2000 (in Portuguese)

[Bei90] Beizer, B. Software Testing Techniques. International Thon@amputer Press,"2 Edition,

1990.

[Bei95] Beizer, B. Black-Box Testing. John Wiley & Sons, 1995.

[Bin0O] Binder, R. Testing Object-Oriented Systems — Models, pagtand Tools. Addison-Wesley,
2000.

[BDA+97] Bourhfir, C.; Dssouli, R.; Abdoulhamid, E.; Rico, N. Automatic extable test case
generation for extended finite state machine protocols. Mar. 1997, In URL:
www.iro.montreal.ca/labs/teleinfo/PubListindex.html

[Car97] Carvalho, M.J.M. Implementation and Testing of the TransfgetL&rotocol of the SACI-1
Ground Station Telecommand System. MSc Dissertation, Federal iditwef Rio Grande do
Norte, December/1997. (in Portuguese)

[CFP96] Cavalli, A. R.; Favreau, J.P.; Phalippou, M. Standardization oomdl methods in
conformance testing of communication protoc@@®mputer Networks and ISDN Syster28, pp
3-14,1996.

[CLP+89] Chanson, S. T., Lee, B. P., Parakh, N. J., Zeng, H. X., Design apkrimntation of a
Ferry clip Test SystemProc. 9th IFIP Symposium on Protocol Specification Testing &
Verification, Enschede, Holland, Jun. 1989.

[CS87] Castanet, R.; Sijelmassi, R. Methods and semiautomatic tools for pregestiriguted testing.
Proc. Of Protocol Specification, Testing and Verification,\gp177-188, 1987.

[CVD92] Chanson, S.T.; Vuong, S. ; Dany, H. Multi-party and interoperabiéisting using the Ferry
Clip approachComputer Communications.15, n.3, Apr. 1992.

[DIM96] Dawson, S.; F. Jahanian,; T. Mitton. ORCHESTRA: a Faultdigam Environment for
Distributed Systems. 36 Intl Symposium on Fault-Tolerant Computing (FTCS), Jun,1996.
Available on sitenttp://www.ecs.umich.edu

[DNCO3] De, P.; Neogi, A.; Chiueh, T-C. VirtualWire: A fault injeon and analysis tool for network
protocols. Proc. IEEE 23 International Conference oin Distributed Computing Systems,
Providence, Rhode Island, USA, 2003.

[EL92] Echtle, K.; Leu, M.. The EFA Fault Injector for Fault-ToletaDistributed System Testing.
Proc. Workshop on Fault-Tolerant Parallel and Distributed Systefmsherst, USA, 1992.

[Gui96] Guimardes, M.S. A user interface framework for an iraégpt test toolset. Master
dissertation, Computing Institute — Campinas University, Brazil, Nov. 1996. (in Rerse)

[Hol91] Holzmann, G.J. Design and Validation of Computer Protocols, Prentice Hall, 1991.

[HRS93] Han, S.; H.A. Rosenberg,; K.G.Shin. DOCTOR: an Integrated &odtWrault Injection
Environment. Technical Report, University of Michigan n°® CSE-TR-192-93, 1993.

[HTI97] Hsueh, M; Tsai, T. K; lyer, R. K, Fault Injection Techniques and Told&E Computerpp
52-75, Apr. 1997.

[ISO91]ISO 9646. OSI Conformance Testing Methodology and Framework , ISO 1991.

[Jeu99] Jeukens, A. “A script generation system”. Technical Re@antpinas University, Campinas,
Brazil, Jul. 1999. (in Portuguese)

[LMN+03] Li, X.; Martin, R.; Nagaraja, K.; Nguyen, T.D.; Zhang, B. '#@dosus: a SAN-Based
Fault-Injection Test-Bed for the Construction of Highly Availaietwork Services". Technical
Report DCS-TR-471, Rutgers University. Obtained in June/2003 on URL://atgpw.panic-
lab.rutgers.edu/~binzhang/mendosus.pdf.

[LWC96] LabWINDOWS/CVI-C for Virtual Instrumentation-User Manuadlational Instruments
Corporation Technical Publication4996

[Mat00] Mattiello-Francisco, M.F. "Software Requirements Speatibn for MASCO Telemetry
Ground Reception”. Tech. Rep. MASCO-SRS-001, INPE, May 2000.

[MSA99] Martins, E.; Sabido, S.B.; Ambrosio, A.M. - "ConData: a Tool féwutomating
Specification-based Test Case Generation for Communication Sg/stenfoftware Quality
Journal Vol. 8, No.4, 303-319, edited by Anna Liu and Paddy Nixon - Kluwer Academic
Publishers, 1999.

[Pre97] Pressman, R.S. “Software Engineering — a practitionppsoach” fourth edition. McGraw-
Hill, 1997.

[RS93] Rosenberg, H.A.; Shin, K.G.. Software Fault Injection and its Applicatioistributed
Systems. IProc. FTCS-23Toulouse, France, 1993.

[Sab99] Sabido, S.B. A test case generation method based on Extended Firtite N&tehines
combining black-box testing techniques. Master dissertation, Computirigutas— Campinas
University, Brazil, Jan. 1999.

[Ste97] Stefani, M.R. Trace analysis and diagnosis generation foavile testing of a protocol
implementation in the presence of faults. MSc dissertation, Computistitute — Campinas
University, Brazil, May 1997. (in Portuguese)

[SVS+88] Segall, Z.; Vrsalovic D.; Siewiorek, D.P.; Yaskin, D.; Kowkiad.; Barton, J.; Dancey, R.;
Robinson, A.; Lin, T. FIAT-Fault Injection Based Automated Testing Emwnent. InProc.
FTCS-18 Tokyo, Japan, pp 102-107, 1988.

[SW97] Sotoma, I.; Weber, T. S. AFIDS — Arquitetura para Injecdo de Fakvas Sistemas
Distribuidos,Anais do XV Simpaésio Brasileiro de Redes de Computad8ésCarlos-SP, 1997.

[Tre99] Tretmans, J. PhD Thesis In: Whtip://www.fmt.cs.utwente.nl/publications/files/280-
TrBe99.ps.gz

[TB99] Tretmans, J.; Belinfante, A.. “Automatic testing with forlmaethods”. Proc. EuroStar'997
European Conference on Software TestingRinceedings of the Conference on Software Testing,
Analysis and Review. EuroSTAR, ®fv. 1999.

[TPB96] Tan, Q.M.; Petrenko, A.; Bochmann, G.V. A test generation tookfmcifications in the
form of finite state machines. In Proc. Int'l Communications Confee2(ICC), USA, Jun/1996,
pp225-229. Obtained on Web site: http://www.iro.umontreal.ca/labs/teleinfo/ReprPutifést

[Ube01]. Uber, F.R. “Integrating Domain Testing into Extended FinitateStMachine Testing,”
Master dissertation, Computing Institute — Campinas University, Brazil,ZDO1. (in Portuguese)

[UY91] Ural, H.; Yang, B. “A test sequence generation method for prttesting”. IEEE Trans. On
Communications39 (4), pp 514-523, Apr. 1991.

[VBF+01] Villela, T.; Braga, J.; Fonseca, R.; Mejla, J.; Rinke, E.; D'AmiF. "An Overview of the
MASCO Balloon-Borne Gamma-Ray Experimemtvances in Space Resear2f01.

[ZR86] Zeng, H.X.; Rayner, D. The Impact of the Ferry Concept on Poitdesting. Proc. V
Protocol Specification, Testing and Verificatiqup 533-544, 1986.

[ZLD+88] Zeng, H.X.; Li, Q.; Du, X.F.; He, C.S. New Advances in Ferfgsting Approaches.

Computer Networks and ISDN Systedts, pp47-54, 1988.

